Jing-bo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6908878/publications.pdf

Version: 2024-02-01

170	5,625	38	66
papers	citations	h-index	g-index
170	170	170	6456
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Two-dimensional nanosheets of MoS ₂ : a promising material with high dielectric properties and microwave absorption performance. Nanoscale, 2015, 7, 15734-15740.	5 . 6	335
2	Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon, 2018, 127, 209-217.	10.3	268
3	Synthesis of Single-Crystal Tetragonal α-MnO ₂ Nanotubes. Journal of Physical Chemistry C, 2008, 112, 12594-12598.	3.1	244
4	Design of shallow acceptors in ZnO: First-principles band-structure calculations. Physical Review B, 2006, 74, .	3.2	198
5	Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO ₂ nanorod arrays. Journal of Materials Chemistry A, 2014, 2, 17820-17827.	10.3	157
6	Birnessite-type MnO ₂ Nanowalls and Their Magnetic Properties. Journal of Physical Chemistry C, 2008, 112, 17089-17094.	3.1	153
7	Phase Manipulating toward Molybdenum Disulfide for Optimizing Electromagnetic Wave Absorbing in Gigahertz. Advanced Functional Materials, 2021, 31, 2011229.	14.9	141
8	Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18. Applied Physics Letters, 2010, 96, .	3.3	127
9	Ultrathin MoS ₂ Nanosheets Encapsulated in Hollow Carbon Spheres: A Case of a Dielectric Absorber with Optimized Impedance for Efficient Microwave Absorption. ACS Applied Materials & Dielectric Absorber with Optimized Impedance for Efficient Microwave Absorption. ACS Applied Materials & Dielectric Acceptance (1978) 12, 20785-20796.	8.0	120
10	One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption. Applied Surface Science, 2018, 447, 244-253.	6.1	115
11	The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC. Applied Physics Letters, 2014, 104, .	3.3	109
12	0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in $2\hat{a}\in 18\hat{A}$ GHz. Carbon, 2022, 193, 182-194.	10.3	108
13	Aggregationâ€Induced Emission Features of Organometal Halide Perovskites and Their Fluorescence Probe Applications. Advanced Optical Materials, 2015, 3, 112-119.	7.3	87
14	Controlled Synthesis of Tellurium Nanostructures from Nanotubes to Nanorods and Nanowires and Their Template Applications. Journal of Physical Chemistry C, 2011, 115, 6375-6380.	3.1	83
15	Synthesis of NiO Nano Octahedron Aggregates as High-Performance Anode Materials for Lithium Ion Batteries. Electrochimica Acta, 2017, 231, 272-278.	5.2	81
16	Structural evolution and physical properties of Bi1â^'xGdxFeO3 ceramics. Acta Materialia, 2010, 58, 3701-3708.	7.9	74
17	Prussianâ€blue materials: Revealing new opportunities for rechargeable batteries. InformaÄnÃ-Materiály, 2022, 4, .	17.3	73
18	Magnetic properties of Bi(Fe1â^'xCrx)O3 synthesized by a combustion method. Applied Physics Letters, 2007, 90, 162513.	3.3	68

#	Article	IF	CITATIONS
19	The synthesis of hierarchical nanostructured MoS 2 /Graphene composites with enhanced visible-light photo-degradation property. Applied Surface Science, 2017, 412, 207-213.	6.1	68
20	Tuning Magnetic Properties of \hat{l}_{\pm} -MnO ₂ Nanotubes by K ⁺ Doping. Journal of Physical Chemistry C, 2010, 114, 8782-8786.	3.1	64
21	X-ray diffraction analysis and specific heat capacity of (Bi1â^'xLax)FeO3 perovskites. Journal of Alloys and Compounds, 2008, 459, 66-70.	5. 5	63
22	Synthesis and magnetic properties of antiferromagnetic Co3O4 nanoparticles. Physica B: Condensed Matter, 2008, 403, 3141-3145.	2.7	62
23	Layer by layer 2D MoS2/rGO hybrids: An optimized microwave absorber for high-efficient microwave absorption. Applied Surface Science, 2019, 470, 899-907.	6.1	62
24	Dumbbell-Like Fe ₃ O ₄ @N-Doped Carbon@2H/1T-MoS ₂ with Tailored Magnetic and Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing. ACS Applied Materials & Dielectric Loss for Efficient Microwave Absorbing & Dielectric L	8.0	62
25	Oxidizing annealing effects on VO2 films with different microstructures. Applied Surface Science, 2015, 345, 232-237.	6.1	59
26	Self-Assembling VO ₂ Nanonet with High Switching Performance at Wafer-Scale. Chemistry of Materials, 2015, 27, 7419-7424.	6.7	58
27	Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability. Applied Surface Science, 2017, 403, 1-8.	6.1	57
28	Biopolymer nanofiber/reduced graphene oxide aerogels for tunable and broadband high-performance microwave absorption. Composites Part B: Engineering, 2019, 161, 1-9.	12.0	57
29	Fe2O3 nanocubes exposed (012) active facets combination with graphene rendering enhanced lithium storage capability. Journal of Power Sources, 2016, 327, 658-665.	7.8	56
30	Hydrothermal One-Step Synthesis of Highly Dispersed M-Phase VO ₂ Nanocrystals and Application to Flexible Thermochromic Film. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28627-28634.	8.0	56
31	Evolution of Structural and Electrical Properties of Oxygen-Deficient VO ₂ under Low Temperature Heating Process. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27135-27141.	8.0	52
32	Sn dopants improve the visible transmittance of VO2 films achieving excellent thermochromic performance for smart window. Solar Energy Materials and Solar Cells, 2020, 209, 110443.	6.2	50
33	Triggering the Reversible Reaction of V ³⁺ /V ⁴⁺ /V ⁵⁺ in Na ₃ V ₂ (PO ₄) ₃ by Cr ³⁺ Substitution. ACS Applied Materials & Description of the Research Property of the Reversible Property o	8.0	47
34	Enhanced microwave absorption properties of Co-doped SiC at elevated temperature. Applied Surface Science, 2018, 445, 383-390.	6.1	46
35	A thermodynamic assessment of the copper–gallium system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 447-453.	1.6	45
36	Rational construction the composite of graphene and hierarchical structure assembled by Fe 2 O 3 nanosheets for lithium storage. Electrochimica Acta, 2017, 243, 18-25.	5. 2	45

#	Article	IF	CITATIONS
37	Low-Molecular-Weight Organo- and Hydrogelators Based on Cyclo(<scp>l</scp> -Lys- <scp>l</scp> -Glu). Langmuir, 2016, 32, 4586-4594.	3.5	44
38	Reversible multielectron redox in NASICON cathode with high energy density for low-temperature sodium-ion batteries. Energy Storage Materials, 2022, 49, 291-298.	18.0	43
39	Investigation on the Explosive Welding of 1100 Aluminum Alloy and AZ31 Magnesium Alloy. Journal of Materials Engineering and Performance, 2016, 25, 2635-2641.	2.5	42
40	Neat Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance. ACS Applied Materials & Design for the Structure of Electrode To Optimize the	8.0	40
41	Synthesis of NiO nanostructures and their catalytic activity in the thermal decomposition of ammonium perchlorate. CrystEngComm, 2016, 18, 4836-4843.	2.6	39
42	A bubble-template approach for assembling Ni–Co oxide hollow microspheres with an enhanced electrochemical performance as an anode for lithium ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 25879-25886.	2.8	39
43	Dielectric relaxations and electrical properties of Aurivillius Bi3.5La0.5Ti2Fe0.5Nb0.5O12 ceramics. Journal of Alloys and Compounds, 2016, 654, 315-320.	5.5	38
44	Oxygen vacancy boosted the electrochemistry performance of Ti4+ doped Nb2O5 toward lithium ion battery. Applied Surface Science, 2020, 499, 143905.	6.1	38
45	Comprehensive investigation of Er2O3 doped (Li,K,Na)NbO3 ceramics rendering potential application in novel multifunctional devices. Journal of Alloys and Compounds, 2016, 683, 171-177.	5.5	37
46	Magnetic properties and magnetocaloric effect of GdGa compound. Journal of Alloys and Compounds, 2009, 469, 15-19.	5 . 5	36
47	W Doping and Voltage Driven Metal–Insulator Transition in VO ₂ Nano-Films for Smart Switching Devices. ACS Applied Nano Materials, 2019, 2, 6738-6746.	5.0	36
48	Importance of Crystallographic Sites on Sodium-Ion Extraction from NASICON-Structured Cathodes for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14312-14320.	8.0	35
49	Spin-glasslike behavior of K+-containing α-MnO2 nanotubes. Journal of Applied Physics, 2009, 105, .	2.5	34
50	The role of Fe dopants in phase stability and electric switching properties of Fe-doped VO2. Ceramics International, 2016, 42, 18764-18770.	4.8	34
51	Inhomogeneous Structure and Magnetic Properties of Aurivillius Ceramics <scp><scp>Bi</scp></scp> _{<i>n</i>â^3} <scp>Ti</scp> <td>ɔૠ\$cp>∢</td> <td>sab>3</td>	ɔૠ \$cp>∢	s ab >3
52	Grains and grain boundaries contribution to dielectric relaxations and conduction of Bi5Ti3FeO15 ceramics. Journal of Applied Physics, 2015, 118, .	2.5	32
53	An Insight into the Convenience and Efficiency of the Freeze-Drying Route to Construct 3D Graphene-Based Hybrids for Lithium-Ion Batteries. Electrochimica Acta, 2016, 221, 124-132.	5.2	32
54	Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance. Scientific Reports, 2016, 6, 27898.	3.3	32

#	Article	IF	Citations
55	Sn–W Co-doping Improves Thermochromic Performance of VO ₂ Films for Smart Windows. ACS Applied Energy Materials, 2020, 3, 9972-9979.	5.1	30
56	Hydrothermal synthesis and photocatalytic properties of pyrochlore Sm2Zr2O7 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 48-54.	3.9	29
57	Graphene boosted pseudocapacitive lithium storage: A case of G-Fe2O3. Electrochimica Acta, 2018, 282, 955-963.	5.2	29
58	Grain Boundary Design of Solid Electrolyte Actualizing Stable Allâ€Solidâ€State Sodium Batteries. Small, 2021, 17, e2103819.	10.0	29
59	Experimental and theoretical investigation of Na4MnAl(PO4)3 cathode material for sodium-ion batteries. Chemical Engineering Journal, 2021, 425, 130680.	12.7	29
60	Self-template processed hierarchical V2O5 nanobelts as cathode for high performance lithium ion battery. Electrochimica Acta, 2015, 182, 621-628.	5.2	28
61	Graphene oxide modified nano-sized BaTiO3 as photocatalyst. Ceramics International, 2018, 44, 15929-15934.	4.8	27
62	Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature. Chemical Engineering Journal, 2022, 448, 137740.	12.7	27
63	Structural transition in unpoled (1â^'x)PMNâ€"xPT ceramics near the morphotropic boundary. Journal of Alloys and Compounds, 2006, 425, 373-378.	5. 5	26
64	Enhanced composites of V2O5 nanowires decorating on graphene layers as ideal cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 695, 2974-2980.	5.5	26
65	Synthesis and their physicochemical behaviors of flower-like Co3O4 microspheres. Journal of Alloys and Compounds, 2016, 654, 523-528.	5. 5	25
66	Contribution of grains and grain boundaries to dielectric relaxations and conduction of Aurivillius Bi4Ti2Fe0.5Nb0.5O12 ceramics. Ceramics International, 2015, 41, 14652-14659.	4.8	24
67	Improved piezoelectricity and luminescence behavior in Er2O3 doped (K,Na)NbO3 ceramics. Materials Letters, 2016, 162, 226-229.	2.6	24
68	Size-Controllable M-Phase VO ₂ Nanocrystals for Flexible Thermochromic Energy-Saving Windows. ACS Applied Nano Materials, 2021, 4, 6778-6785.	5.0	24
69	Solidâ€State Na Metal Batteries with Superior Cycling Stability Enabled by Ferroelectric Enhanced Na/Na ₃ Zr ₂ Si _{PO₁₂ Interface. Small, 2022, 18, e2200716.}	10.0	24
70	Thermodynamics and structural relaxation in Ce-based bulk metallic glass-forming liquids. Journal of Alloys and Compounds, 2011, 509, 4569-4573.	5.5	22
71	Self-assembly process of China rose-like \hat{l}^2 -Co(OH) ₂ and its topotactic conversion route to Co ₃ O ₄ with optimizable catalytic performance. CrystEngComm, 2015, 17, 8248-8255.	2.6	22
72	Effects of Co2+ doping on physicochemical behaviors of hierarchical NiO nanostructure. Applied Surface Science, 2016, 390, 890-896.	6.1	22

#	Article	IF	CITATIONS
73	Phase diagram of the Bi2O3–Cr2O3 system. Materials Chemistry and Physics, 2008, 112, 239-243.	4.0	21
74	Effect of reduction/oxidation annealing on the dielectric relaxation and electrical properties of Aurivillius Na _{0.5} Gd _{0.5} Bi ₄ Ti ₄ O ₁₅ ceramics. RSC Advances, 2016, 6, 35102-35109.	3.6	21
75	Structures of the ζ and ζ′ phases in the Ag–Ga system. Journal of Alloys and Compounds, 2005, 399, 155-159.	5.5	20
76	Thermodynamic assessment of the Ag–Ga system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 316-322.	1.6	20
77	Magnetic properties and magnetocaloric effect of Nd(Mn1â^'xFex)2Ge2 compounds. Journal of Alloys and Compounds, 2010, 489, 13-19.	5.5	20
78	Dimension meditated optic and catalytic performance over vanadium pentoxides. Applied Surface Science, 2016, 389, 112-117.	6.1	20
79	VO2 (A)/graphene nanostructure: Stand up to Na ion intercalation/deintercalation for enhanced electrochemical performance as a Na-ion battery cathode. Electrochimica Acta, 2019, 293, 97-104.	5.2	20
80	Correlating the gradient nitrogen doping and electromagnetic wave absorption of graphene at gigahertz. Journal of Alloys and Compounds, 2021, 854, 157113.	5.5	20
81	Thermodynamic modeling of native point defects and dopants of GaN semiconductors. Journal of Electronic Materials, 2002, 31, 321-326.	2.2	19
82	Enhanced ionic conductivity of Agl nanowires/AAO composites fabricated by a simple approach. Nanotechnology, 2008, 19, 495706.	2.6	18
83	Construction of Zn2GeO4/Graphene Nanostructures with Dually-Protected Functional Nanoframes for Enhanced Lithium-Storage Performances. Electrochimica Acta, 2017, 251, 129-136.	5.2	18
84	Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries. Journal of Materials Science, 2018, 53, 1356-1364.	3.7	18
85	Surface modification-assisted solvent annealing to prepare high quality M-phase VO2 nanocrystals for flexible thermochromic films. Solar Energy Materials and Solar Cells, 2019, 200, 110031.	6.2	18
86	Influence of the charge compensation effect on the metal–insulator transition of Mg-W co-doped VO2. Applied Surface Science, 2022, 579, 151990.	6.1	18
87	Optimizing the Na metal/solid electrolyte interface through a grain boundary design. Journal of Materials Chemistry A, 2022, 10, 5280-5286.	10.3	18
88	A new structure type of phosphate: Crystal structure of Na2Zn5(PO4)4. Journal of Solid State Chemistry, 2007, 180, 2256-2261.	2.9	17
89	Effect of Nd ³⁺ substitution for Bi ³⁺ on the dielectric properties and conduction behavior of Aurivillius NdBi ₄ Ti ₃ FeO ₁₅ ceramics. RSC Advances, 2016, 6, 21254-21260.	3.6	17
90	Symmetric Confined Growth of Superstructured Vanadium Dioxide Nanonet with a Regular Geometrical Pattern by a Solution Approach. Crystal Growth and Design, 2017, 17, 5838-5844.	3.0	17

#	Article	IF	Citations
91	The synthesis of FeCoS ₂ and an insight into its physicochemical performance. CrystEngComm, 2018, 20, 2175-2182.	2.6	17
92	Effect of phase structure changes on the lead-free Er3+-doped (K0.52Na0.48)1â^'Li NbO3 piezoelectric ceramics. Journal of Alloys and Compounds, 2016, 680, 467-472.	5.5	16
93	Temperature dependent conductivity of Bi4Ti3O12 ceramics induced by Sr dopants. Journal of Advanced Ceramics, 2018, 7, 256-265.	17.4	16
94	Tri-wing bismuth telluride nanoribbons with quasi-periodic rough surfaces. Journal of Materials Chemistry, 2011, 21, 12375.	6.7	15
95	Enhanced Fieldâ€Induced Strain in the Textured Leadâ€Free Ceramic. Journal of the American Ceramic Society, 2016, 99, 3985-3992.	3.8	15
96	The effect of the phase structure on physicochemical properties of TMO materials: a case of spinel to bunsenite. CrystEngComm, 2017, 19, 5809-5814.	2.6	15
97	Convenient Synthesis of WS ₂ –MoS ₂ Heterostructures with Enhanced Photocatalytic Performance. Journal of Physical Chemistry C, 2019, 123, 27363-27368.	3.1	15
98	Electric field driven abnormal increase in conductivity of tungsten-doped VO2 nanofilms. Thin Solid Films, 2021, 725, 138643.	1.8	15
99	Subsolidus phase relations of the Cu–Ga–N system. Journal of Alloys and Compounds, 2007, 438, 158-164.	5.5	14
100	Dielectric relaxation and electrical properties of Sm 0.5 Bi 4.5 Ti 3 FeO 15 ceramics. Journal of Alloys and Compounds, 2017, 709, 686-691.	5.5	14
101	Effect of Fe/Ta doping on structural, dielectric, and electrical properties of Bi ₄ Ti _{2.5} Fe _{0.25} Ta _{0.25} O ₁₂ ceramics. Journal of the American Ceramic Society, 2017, 100, 602-611.	3.8	14
102	Confining ferric oxides in porous carbon for efficient lithium storage. Electrochimica Acta, 2018, 292, 879-886.	5.2	14
103	Structure, dielectric and magnetodielectric properties of Bi ⟨sub⟩ 1â€" ⟨i⟩x⟨/i⟩ ⟨/sub⟩ Gd ⟨sub⟩ ⟨i⟩x⟨/i⟩ ⟨/sub⟩ FeO ⟨sub⟩ 3⟨/sub⟩ Ceramics. Chinese Physics B, 2010, 19, 107505.	1.4	13
104	Hydrothermal synthesis of cobalt particles with hierarchy structure and physicochemical properties. Materials Research Bulletin, 2015, 72, 7-12.	5.2	13
105	Evolution of microstructure in vanadium oxide bolometer film during annealing process. Applied Surface Science, 2015, 357, 887-891.	6.1	13
106	Structural, magnetic and dielectric properties of Bi4Nd0.5Gd0.5Ti3FeO15 ceramics. Ceramics International, 2016, 42, 2806-2812.	4.8	13
107	Hole Dopants Disentangling Peierls–Mott Relevance States of VO ₂ by First-Principles Calculation. Journal of Physical Chemistry C, 2021, 125, 5816-5823.	3.1	13
108	A thermodynamic assessment of the Ga-As-Sb system. Journal of Phase Equilibria and Diffusion, 1998, 19, 466-472.	0.3	12

#	Article	IF	Citations
109	A thermodynamic assessment of the Ga-In-P system. Journal of Phase Equilibria and Diffusion, 2000, 21, 357-363.	0.3	12
110	Thermodynamic analysis of the Ga–Ti system. Journal of Alloys and Compounds, 2003, 358, 133-141.	5 . 5	12
111	A Thermodynamic Assessment of the In–Se System. International Journal of Materials Research, 2003, 94, 381-389.	0.8	12
112	Phase relations of the Ag–Ga–N system. Journal of Alloys and Compounds, 2007, 429, 184-191.	5.5	12
113	Controlled hydrothermal synthesis of tri-wing tellurium nanoribbons and their template reaction. CrystEngComm, 2012, 14, 251-255.	2.6	12
114	VO2(M)@SnO2 core–shell nanoparticles: Improved chemical stability and thermochromic property rendered by SnO2 shell. Applied Surface Science, 2022, 598, 153741.	6.1	12
115	A thermodynamic reassessment of the Al-As-Ga system. Journal of Phase Equilibria and Diffusion, 2001, 22, 26-33.	0.3	11
116	Thermodynamic modeling of native defects in ZnO. Optical Materials, 2013, 35, 1213-1217.	3.6	11
117	Structure evolution and entropy change of temperature and magnetic field induced magneto-structural transition in Mn1.1Fe0.9P0.76Ge0.24. Journal of Applied Physics, 2013, 113, .	2.5	11
118	Key Experiments and Thermodynamic Description of the Co-Nb-Ni System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5892-5911.	2.2	11
119	Phase relations and flux research for ZnO crystal growth in the ZnO–B2O3–P2O5 system. Journal of Alloys and Compounds, 2008, 459, 481-486.	5.5	10
120	Subsolidus phase relations of the ZnO–Li2O–P2O5 system. Journal of Alloys and Compounds, 2009, 486, 352-356.	5.5	10
121	Spin glass behavior in <i>A</i> -site ordered YBaMn2O6 compound. Journal of Applied Physics, 2013, 114, .	2.5	10
122	The effect of artificial stress on Er 3+ doped perovskite lead-free piezoceramics. Journal of Alloys and Compounds, 2017, 709, 724-728.	5 . 5	10
123	The synthesis of ultra-long cobalt chains and its outstanding catalytic performance on the thermal decomposition of ammonium perchlorate. Materials Chemistry and Physics, 2017, 201, 235-240.	4.0	10
124	Dualâ€Function of Cationâ€Doping to Activate Cationic and Anionic Redox in a Mnâ€Based Sodiumâ€Layered Oxide Cathode. Small, 2022, 18, e2200289.	10.0	10
125	Effect of Ti on the Stability of Phases in the (1 â^' x)Pb(Mg1/3Nb2/3)O3-xPbTiO3Solid Solution. Ferroelectrics, 2004, 313, 71-80.	0.6	9
126	Anomalous phase composition in the two-phase region of DyFe _{3â^'<i>x</i>} Al _{<i>x</i>} (<i>x</i>)â%\$.0). Powder Diffraction, 2010, 25, 349-354.	0.2	9

#	Article	IF	CITATIONS
127	Effects of Fe substitution on structural and magnetic properties of the Nd2Co7â°'xFex compounds. Journal of Alloys and Compounds, 2010, 506, 766-771.	5.5	9
128	A thermodynamic assessment of the In-As-Sb system. Journal of Phase Equilibria and Diffusion, 1998, 19, 473-478.	0.3	8
129	Phase relations and flux research for zinc oxide crystal growth in the ZnO–Na2O–P2O5 system. Journal of Alloys and Compounds, 2008, 465, 436-441.	5.5	8
130	Assessment of phase diagram and thermodynamic properties of the Al-Ga-Sb system. Journal of Phase Equilibria and Diffusion, 1999, 20, 316-323.	0.3	7
131	Computer simulations of phase transformation in steels. Materials & Design, 2001, 22, 39-43.	5.1	7
132	Phase composition of arc-melted alloys in the ternary systemCe–Al–Cu (Cu-poor portion). Intermetallics, 2009, 17, 775-779.	3.9	7
133	Microstructural control of Co3O4 nanoboxes for enhanced oxygen evolution in alkaline media. Journal of Alloys and Compounds, 2020, 835, 155290.	5.5	7
134	W-VO ₂ /Cs _{0.32} WO ₃ Composite Flexible Films: Promoted Metal–Insulator Transition and Enhanced Near-Infrared Shielding. ACS Applied Energy Materials, 2022, 5, 3064-3071.	5.1	7
135	Thermochromic VO2 based sandwich structure Ag/Al2O3/VO2 with low solar absorption and tunable emittance for spacecraft. Journal of Applied Physics, 2022, 131, .	2.5	7
136	Optimizing phase transition temperature and visible transmittance of VO2 films driven by synergistic effect of La-Mo co-doping. Applied Surface Science, 2022, 600, 154074.	6.1	7
137	Synthesis and thermoelectric performance of Ni0.3Co3.7Sb12 skutterudite filled with electronegative guest Se. Ceramics International, 2021, 47, 17753-17759.	4.8	6
138	First-principle calculation of electronic and optical properties of VO2 by GGA- $1/2$ quasiparticle approximation. Journal of Applied Physics, 2020, 128, .	2.5	6
139	Thermodynamic analysis of Mg-doped p-type GaN semiconductor. Journal of Alloys and Compounds, 2006, 422, 279-282.	5.5	5
140	Experimental study of the phase equilibria of the Ni – Zr system. International Journal of Materials Research, 2008, 99, 712-715.	0.3	5
141	Phase relations in the ZnO-V ₂ O ₅ -K ₂ O system. Chinese Physics B, 2011, 20, 076402.	1.4	5
142	Enhanced photoconductivity of 3C-SiC by Al/N codoping. Journal of Applied Physics, 2013, 114, 104901.	2.5	5
143	Dielectric relaxation and conduction behaviors of Aurivillius Na0.5Bi4.5Ti4O15 ceramics with Na doping. Rare Metals, 2021, 40, 1247-1254.	7.1	5
144	Phase relations and flux research for zinc oxide crystal growth in the ZnO–K2O–P2O5 system. Journal of Alloys and Compounds, 2009, 470, 336-339.	5.5	4

#	Article	IF	CITATIONS
145	Design of a novel negative refractive index material based on numerical simulation. EPJ Applied Physics, 2013, 63, 10502.	0.7	4
146	Vanadium-Substituted Formation of Anatase (V, Ti)O ₂ : Enhanced Electrochemical Performance for Lithium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 598-606.	5.1	4
147	Design of highly reflective film for smart radiation device. Vibroengineering PROCEDIA, 2022, 40, 132-138.	0.5	4
148	Development of thermodynamic modeling of oxygen-doped GaN semiconductor. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2003, 27, 1-8.	1.6	3
149	Hierarchical V2O5 microspheres: A pseudocapacitive cathode material for enhanced sodium ion storage. Journal of Alloys and Compounds, 2022, 895, 162617.	5. 5	3
150	Crystal structure and thermal properties of compound K ₂ 336/sub>27) ₂ . Powder Diffraction, 2008, 23, 317-322.	0.2	2
151	Synthesis and crystal structure of a novel hexaborate, Na ₂ ZnB ₆ O ₁₁ . Powder Diffraction, 2010, 25, 9-14.	0.2	2
152	The heat capacity measurements of CoSb ₃ -based Skutterudite compounds. International Journal of Materials Research, 2010, 101, 808-811.	0.3	2
153	Neutron diffraction study on composite compound Nd ₂ Co ₇ . Chinese Physics B, 2011, 20, 106101.	1.4	2
154	Dual-band tunable negative refractive index metamaterial with F-Shape structure. Open Physics, 2014, 12, .	1.7	2
155	Dielectric behaviors and electrical properties of Gd-doped Aurivillius KBi4Ti4O15 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 14674-14680.	2.2	2
156	Crystal structure determination of K2Zn(PO3)4. Powder Diffraction, 2009, 24, 4-7.	0.2	1
157	A comparative study on characteristic relaxation in Ce65Al10Cu20Co5 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glasses and supercooled liquids. Intermetallics, 2011, 19, 81-85.	3.9	1
158	Subsolidus Phase Relations of the <scp><scp>BaO</scp></scp>	sub‰ a €"∢s	cp⊅ <scp>Mn</scp>
159	R-site cation randomness effect in theA-site ordered Y0.5La0.5BaMn2O6compound. Chinese Physics B, 2013, 22, 077502.	1.4	1
160	Phase separation in Sr doped BiMnO ₃ . Chinese Physics B, 2014, 23, 036401.	1.4	1
161	Microstructural Evolution in High-Strain-Rate Deformation of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy. Materials, 2018, 11, 839.	2.9	1
162	Thermodynamic modeling of elastic mismatch strain energy on epitaxial growth of GalnN thin films. Journal of Alloys and Compounds, 2019, 798, 112-118.	5.5	1

#	Article	IF	CITATIONS
163	Dielectric relaxation and electrical properties of Na0.5Bi4La0.5Ti4O15 electroceramics. Journal of Electroceramics, 2020, 44, 147-153.	2.0	1
164	Thermodynamic analysis of the Ga–In–As–Sb–C–H system. Journal of Crystal Growth, 1999, 207, 20-7	26.1.5	0
165	Thermodynamic Analysis of the Ga—Ti System ChemInform, 2003, 34, no.	0.0	0
166	Subsolidus phase relations of the Dy-Fe-Al system. Powder Diffraction, 2011, 26, 9-15.	0.2	0
167	Magnetic structure and preferential occupation of Fe in the composite compound Nd2Co6Fe. Physica B: Condensed Matter, 2011, 406, 1995-1999.	2.7	0
168	The crystal structures and physical properties of the solid solution compound Ba 5 Y 8 \hat{a} ° x Mn 4 O 21 \hat{a} ° 1.5 x (x = 0,1). Chinese Physics B, 2012, 21, 066102.	1.4	0
169	Phase precipitation in the Bi 1â°'x Ca x MnO 3 compounds (x = 0.4â€"0.6). Europhysics Letters, 2013, 101, 67004.	2.0	0
170	Utilization of the $V5+/V4$ + Redox Reaction in Nasicon-Structured Cathode Materials for Sodium-Ion Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 1695-1695.	0.0	0