Klaus Okkenhaug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6908685/publications.pdf

Version: 2024-02-01

118 papers	17,742 citations	56 h-index	21540 114 g-index
130	130	130	21359
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs. Nature, 2022, 605, 741-746.	27.8	36
2	PI3KΠForms Distinct Multiprotein Complexes at the TCR Signalosome in Naà ve and Differentiated CD4+ T Cells. Frontiers in Immunology, 2021, 12, 631271.	4.8	12
3	How to resist PI3Kδ inhibition: activate MAPK!. Blood, 2021, 138, 3-4.	1.4	1
4	CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function. Immunology, 2021, 163, 512-520.	4.4	46
5	PI3K inhibitors are finally coming of age. Nature Reviews Drug Discovery, 2021, 20, 741-769.	46.4	222
6	PI3K in T Cell Adhesion and Trafficking. Frontiers in Immunology, 2021, 12, 708908.	4.8	12
7	The GPCR adaptor protein norbin suppresses the neutrophil-mediated immunity of mice to pneumococcal infection. Blood Advances, 2021, 5, 3076-3091.	5.2	8
8	Activated PI3K \hat{l} syndrome, an immunodeficiency disorder, leads to sensorimotor deficits recapitulated in a murine model. Brain, Behavior, & Immunity - Health, 2021, 18, 100377.	2.5	4
9	Tumors induce de novo steroid biosynthesis in T cells to evade immunity. Nature Communications, 2020, 11, 3588.	12.8	54
10	Intravital Imaging of Adoptive T-Cell Morphology, Mobility and Trafficking Following Immune Checkpoint Inhibition in a Mouse Melanoma Model. Frontiers in Immunology, 2020, 11, 1514.	4.8	23
11	MO064TISSUE-RESIDENT B CELLS DETERMINE SUSCEPTIBILITY TO URINARY TRACT INFECTION BY ORCHESTRATING MACROPHAGE POLARISATION. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	O
12	BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression. Journal of Experimental Medicine, 2020, 217, .	8.5	47
13	A cell-based bioluminescence assay reveals dose-dependent and contextual repression of AP-1-driven gene expression by BACH2. Scientific Reports, 2020, 10, 18902.	3.3	2
14	Loss of Phosphatidylinositol 3-Kinase Activity in Regulatory T Cells Leads to Neuronal Inflammation. Journal of Immunology, 2020, 205, 78-89.	0.8	18
15	Topoisomerase 2β mutation impairs early B-cell development. Blood, 2020, 135, 1497-1501.	1.4	18
16	Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate. Nature Communications, 2020, 11, 3412.	12.8	47
17	C5a impairs phagosomal maturation in the neutrophil through phosphoproteomic remodeling. JCI Insight, 2020, 5, .	5.0	26
18	Class IA PI3Ks regulate subcellular and functional dynamics of IDO1. EMBO Reports, 2020, 21, e49756.	4.5	24

#	Article	IF	CITATIONS
19	<scp>PI</scp> 3â€kinase delta enhances axonal <scp>PIP</scp> ₃ to support axon regeneration in the adult <scp>CNS</scp> . EMBO Molecular Medicine, 2020, 12, e11674.	6.9	31
20	The PI3K p $110\hat{l}^{\prime}$ Isoform Inhibitor Idelalisib Preferentially Inhibits Human Regulatory T Cell Function. Journal of Immunology, 2019, 202, 1397-1405.	0.8	104
21	Inhibition of Phosphoinositide-3-Kinase Signaling Promotes the Stem Cell State of Trophoblast. Stem Cells, 2019, 37, 1307-1318.	3.2	10
22	Phosphoinositide 3â€kinaseÂδis a regulatory Tâ€cell target in cancer immunotherapy. Immunology, 2019, 157, 210-218.	4.4	30
23	Immunodeficiency, autoimmune thrombocytopenia and enterocolitis caused by autosomal recessive deficiency of <i>PIK3CD</i> -encoded phosphoinositide 3-kinase Î. Haematologica, 2019, 104, e483-e486.	3.5	26
24	Targeting PI3Kl´ function for amelioration of murine chronic graft-versus-host disease. American Journal of Transplantation, 2019, 19, 1820-1830.	4.7	9
25	PI3K induces B-cell development and regulates B cell identity. Scientific Reports, 2018, 8, 1327.	3.3	43
26	Non-Invasive Multiphoton Imaging of Islets Transplanted Into the Pinna of the NOD Mouse Ear Reveals the Immediate Effect of Anti-CD3 Treatment in Autoimmune Diabetes. Frontiers in Immunology, 2018, 9, 1006.	4.8	8
27	$PI3K\hat{l}'$ hyper-activation promotes development of BÂcells that exacerbate Streptococcus pneumoniae infection in an antibody-independent manner. Nature Communications, 2018, 9, 3174.	12.8	56
28	Phosphoinositide 3-kinase \hat{l} inhibition promotes antitumor responses but antagonizes checkpoint inhibitors. JCI Insight, 2018, 3, .	5.0	38
29	Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCl Insight, 2018, 3, .	5.0	90
30	Obesity-Induced Metabolic Stress Leads to Biased Effector Memory CD4 + T Cell Differentiation via PI3K p110δ-Akt-Mediated Signals. Cell Metabolism, 2017, 25, 593-609.	16.2	124
31	Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity, 2017, 47, 875-889.e10.	14.3	181
32	Clinical spectrum and features of activated phosphoinositide 3-kinase δsyndrome: AÂlarge patient cohort study. Journal of Allergy and Clinical Immunology, 2017, 139, 597-606.e4.	2.9	377
33	T5â€Complement protein c5a induces prolonged neutrophil dysfunction in a clinically relevant model of human bacteraemia. , 2017, , .		1
34	BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nature Immunology, 2016, 17, 851-860.	14.5	221
35	Targeting PI3K in Cancer: Impact on Tumor Cells, Their Protective Stroma, Angiogenesis, and Immunotherapy. Cancer Discovery, 2016, 6, 1090-1105.	9.4	217
36	lonic immune suppression within the tumour microenvironment limits T cell effector function. Nature, 2016, 537, 539-543.	27.8	479

#	Article	IF	CITATIONS
37	PI3Kδ and primary immunodeficiencies. Nature Reviews Immunology, 2016, 16, 702-714.	22.7	259
38	PI3KÎ′ promotes CD4 ⁺ Tâ€cell interactions with antigenâ€presenting cells by increasing LFAâ€1 binding to ICAMâ€1. Immunology and Cell Biology, 2016, 94, 486-495.	2.3	19
39	The transcription factor BACH2 promotes tumor immunosuppression. Journal of Clinical Investigation, 2016, 126, 599-604.	8.2	49
40	Inhibition of Phosphoinositide 3-Kinase p110delta Does Not Affect T Cell Driven Development of Type 1 Diabetes Despite Significant Effects on Cytokine Production. PLoS ONE, 2016, 11, e0146516.	2.5	4
41	Editorial: Lipid Signaling in T Cell Development and Function. Frontiers in Immunology, 2015, 6, 410.	4.8	1
42	Immunomodulation of Selective Naive T Cell Functions by p110 $\hat{\Gamma}$ Inactivation Improves the Outcome of Mismatched Cell Transplantation. Cell Reports, 2015, 10, 702-710.	6.4	12
43	PI3K inhibitors in inflammation, autoimmunity and cancer. Current Opinion in Pharmacology, 2015, 23, 82-91.	3 . 5	258
44	Oncogenic PI3Kl± promotes multipotency in breast epithelial cells. Science Signaling, 2015, 8, pe3.	3.6	4
45	Cowden's syndrome with immunodeficiency. Journal of Medical Genetics, 2015, 52, 856-859.	3.2	48
46	PI3K Signaling in Normal B Cells and Chronic Lymphocytic Leukemia (CLL). Current Topics in Microbiology and Immunology, 2015, 393, 123-142.	1.1	46
47	PI3KδRegulates the Magnitude of CD8+ T Cell Responses after Challenge with <i>Listeria monocytogenes</i> . Journal of Immunology, 2015, 195, 3206-3217.	0.8	32
48	IL-21 Promotes CD4 T Cell Responses by Phosphatidylinositol 3-Kinase–Dependent Upregulation of CD86 on B Cells. Journal of Immunology, 2014, 192, 2195-2201.	0.8	42
49	PI3K Signaling in B Cell and T Cell Biology. Frontiers in Immunology, 2014, 5, 557.	4.8	22
50	Idelalisib—targeting PI3Kδin patients with B-cell malignancies. Nature Reviews Clinical Oncology, 2014, 11, 184-186.	27.6	46
51	Inactivation of PI(3)K p $110\hat{l}^{\prime}$ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature, 2014, 510, 407-411.	27.8	450
52	PI3K., 2014,, 851-854.		0
53	A Protocol for Construction of Gene Targeting Vectors and Generation of Homologous Recombinant Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1064, 337-354.	0.9	9
54	Two Birds with One Stone: Dual p110δ and p110γ Inhibition. Chemistry and Biology, 2013, 20, 1309-1310.	6.0	17

#	Article	IF	Citations
55	Rules of engagement: distinct functions for the four class I PI3K catalytic isoforms in immunity. Annals of the New York Academy of Sciences, 2013, 1280, 24-26.	3.8	37
56	Phosphoinositide 3-Kinase δGene Mutation Predisposes to Respiratory Infection and Airway Damage. Science, 2013, 342, 866-871.	12.6	541
57	Signaling by the Phosphoinositide 3-Kinase Family in Immune Cells. Annual Review of Immunology, 2013, 31, 675-704.	21.8	349
58	Gene Targeting in Mice: A Review. Methods in Molecular Biology, 2013, 1064, 315-336.	0.9	128
59	PI3K p $110\hat{l}$ Is Expressed by gp $38\hat{a}$ CD $31+$ and gp $38+$ CD $31+$ Spleen Stromal Cells and Regulates Their CCL 19 , CCL 21 , and LT \hat{l} 2R mRNA Levels. PLoS ONE, 2013, 8, e72960.	2.5	2
60	Abstract A86: Inactivation of p110delta PI3K releases potent antitumor immunity , 2013, , .		0
61	Blockade of Phosphatidylinositol 3-Kinase (PI3K)Β or PI3Kγ Reduces IL-17 and Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis. Journal of Immunology, 2012, 189, 4612-4620.	0.8	71
62	PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. Journal of Experimental Medicine, 2012, 209, 2441-2453.	8.5	518
63	Does the PI3K pathway promote or antagonize regulatory T cell development and function?. Frontiers in Immunology, 2012, 3, 244.	4.8	38
64	Pten Loss in CD4 T Cells Enhances Their Helper Function but Does Not Lead to Autoimmunity or Lymphoma. Journal of Immunology, 2012, 188, 5935-5943.	0.8	31
65	Genetic or Pharmaceutical Blockade of Phosphoinositide 3-Kinase p $110\hat{l}$ Prevents Chronic Rejection of Heart Allografts. Transplantation, 2012, 94, 301.	1.0	0
66	Genetic or Pharmaceutical Blockade of Phosphoinositide 3-Kinase p $110\hat{l}$ Prevents Chronic Rejection of Heart Allografts. Transplantation, 2012, 94, 443.	1.0	0
67	Genetic or Pharmaceutical Blockade of Phosphoinositide 3-Kinase P110l´ Prevents Chronic Rejection of Heart Allografts. PLoS ONE, 2012, 7, e32892.	2.5	13
68	PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8 ⁺ T cells. Journal of Cell Biology, 2012, 199, i8-i8.	5.2	1
69	The Therapeutic Potential for PI3K Inhibitors in Autoimmune Rheumatic Diseases. Open Rheumatology Journal, 2012, 6, 245-258.	0.2	82
70	PI3KÎ ² Plays a Critical Role in Neutrophil Activation by Immune Complexes. Science Signaling, 2011, 4, ra23.	3.6	130
71	Protein Kinase B Controls Transcriptional Programs that Direct Cytotoxic T Cell Fate but Is Dispensable for T Cell Metabolism. Immunity, 2011, 34, 224-236.	14.3	235
72	The PI3K p110Î Regulates Expression of CD38 on Regulatory T Cells. PLoS ONE, 2011, 6, e17359.	2.5	73

#	Article	IF	CITATIONS
73	PI3K p $110\hat{1}$ regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood, 2010, 115, 2203-2213.	1.4	174
74	Phosphoinositide 3-Kinase Activity in T Cells Regulates the Magnitude of the Germinal Center Reaction. Journal of Immunology, 2010, 185, 4042-4052.	0.8	200
75	Cross Talk between Phosphatidylinositol 3-Kinase and Cyclic AMP (cAMP)-Protein Kinase A Signaling Pathways at the Level of a Protein Kinase B/β-Arrestin/cAMP Phosphodiesterase 4 Complex. Molecular and Cellular Biology, 2010, 30, 1660-1672.	2.3	61
76	Ig gene-like molecule CD31 plays a nonredundant role in the regulation of T-cell immunity and tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19461-19466.	7.1	57
77	The PI3K Isoforms p110α and p110δAre Essential for Pre–B Cell Receptor Signaling and B Cell Development. Science Signaling, 2010, 3, ra60.	3.6	179
78	PI3Ks in Lymphocyte Signaling and Development. Current Topics in Microbiology and Immunology, 2010, 346, 57-85.	1.1	55
79	MAPK, Phosphatidylinositol 3-Kinase, and Mammalian Target of Rapamycin Pathways Converge at the Level of Ribosomal Protein S6 Phosphorylation to Control Metabolic Signaling in CD8 T Cells. Journal of Immunology, 2009, 183, 7388-7397.	0.8	108
80	p110Â and p110Â isoforms of phosphoinositide 3-kinase differentially regulate natural killer cell migration in health and disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5795-5800.	7.1	74
81	The p110δIsoform of Phosphatidylinositol 3-Kinase Controls Susceptibility to <i>Leishmania major</i> by Regulating Expansion and Tissue Homing of Regulatory T Cells. Journal of Immunology, 2009, 183, 1921-1933.	0.8	83
82	Ribosomal Protein S6 Kinase 1 Signaling Regulates Mammalian Life Span. Science, 2009, 326, 140-144.	12.6	1,009
83	Cutting Edge: The Foxp3 Target miR-155 Contributes to the Development of Regulatory T Cells. Journal of Immunology, 2009, 182, 2578-2582.	0.8	350
84	CCL21 mediates CD4+ T-cell costimulation via a DOCK2/Rac-dependent pathway. Blood, 2009, 114, 580-588.	1.4	74
85	Proliferative signals mediated by CD28 superagonists require the exchange factor Vav1 but not phosphoinositide 3â€kinase in primary peripheral T cells. European Journal of Immunology, 2008, 38, 2528-2533.	2.9	11
86	Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nature Immunology, 2008, 9, 513-521.	14.5	364
87	Evidence for lifespan extension and delayed age–related biomarkers in insulin receptor substrate 1 null mice. FASEB Journal, 2008, 22, 807-818.	0.5	487
88	Genetic or pharmaceutical blockade of p110 \hat{l} phosphoinositide 3-kinase enhances IgE production. Journal of Allergy and Clinical Immunology, 2008, 122, 811-819.e2.	2.9	67
89	The p $110\hat{l}^2$ isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p $110\hat{l}^3$. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8292-8297.	7.1	317
90	CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood, 2008, 111, 1464-1471.	1.4	121

#	Article	IF	Citations
91	T cell receptor–induced phosphoinositide-3-kinase p110Î′ activity is required for T cell localization to antigenic tissue in mice. Journal of Clinical Investigation, 2008, 118, 1154-64.	8.2	49
92	Requirement for Phosphoinositide 3-Kinase p110δSignaling in B Cell Antigen Receptor-Mediated Antigen Presentation. Journal of Immunology, 2007, 178, 2328-2335.	0.8	45
93	Physiologic and aberrant regulation of memory T-cell trafficking by the costimulatory molecule CD28. Blood, 2007, 109, 2968-2977.	1.4	74
94	Inactivation of PI3K \hat{I}^3 and PI3K \hat{I}^7 distorts T-cell development and causes multiple organ inflammation. Blood, 2007, 110, 2940-2947.	1.4	113
95	Antigen receptor signalling: a distinctive role for the p $110\hat{l}$ isoform of PI3K. Trends in Immunology, 2007, 28, 80-87.	6.8	114
96	A two-signal model for T cell trafficking. Trends in Immunology, 2007, 28, 267-273.	6.8	34
97	Requirement of <i>bic/microRNA-155</i> for Normal Immune Function. Science, 2007, 316, 608-611.	12.6	1,786
98	Role of the phosphoinositide 3â€kinase p110δin generation of type 2 cytokine responses and allergic airway inflammation. European Journal of Immunology, 2007, 37, 416-424.	2.9	106
99	Key role of the p110 \hat{l} isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110 \hat{l} function in B cells. Blood, 2006, 107, 642-650.	1.4	202
100	Critical role for the p110 \hat{l} ± phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature, 2006, 441, 366-370.	27.8	439
101	The p $110\hat{l}^\prime$ Isoform of Phosphoinositide 3-Kinase Controls Clonal Expansion and Differentiation of Th Cells. Journal of Immunology, 2006, 177, 5122-5128.	0.8	192
102	Cutting Edge: The Phosphoinositide 3-Kinase p $110\hat{l}$ Is Critical for the Function of CD4+CD25+Foxp3+ Regulatory T Cells. Journal of Immunology, 2006, 177, 6598-6602.	0.8	280
103	Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood, 2005, 106, 1432-1440.	1.4	274
104	P-Rex1 Regulates Neutrophil Function. Current Biology, 2005, 15, 1867-1873.	3.9	161
105	Role of the p $110\hat{l}$ PI 3-kinase in integrin and ITAM receptor signalling in platelets. Platelets, 2005, 16, 191-202.	2.3	47
106	CD28 Regulates the Translation of Bcl-xL via the Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Pathway. Journal of Immunology, 2005, 174, 180-194.	0.8	58
107	Cutting Edge: Differential Roles for Phosphoinositide 3-Kinases, p $110\hat{l}^3$ and p $110\hat{l}^3$, in Lymphocyte Chemotaxis and Homing. Journal of Immunology, 2004, 173, 2236-2240.	0.8	217
108	Essential role for the p $110\hat{l}$ phosphoinositide 3-kinase in the allergic response. Nature, 2004, 431, 1007-1011.	27.8	369

#	Article	IF	CITATIONS
109	PI3K in lymphocyte development, differentiation and activation. Nature Reviews Immunology, 2003, 3, 317-330.	22.7	690
110	Gene-targeting reveals physiological roles and complex regulation of the phosphoinositide 3-kinases. Archives of Biochemistry and Biophysics, 2003, 414, 13-18.	3.0	34
111	Class I Phosphoinositide 3-Kinase p $110\hat{l}^2$ Is Required for Apoptotic Cell and Fc \hat{l}^3 Receptor-mediated Phagocytosis by Macrophages. Journal of Biological Chemistry, 2003, 278, 38437-38442.	3.4	83
112	Impaired B and T Cell Antigen Receptor Signaling in p 110 delta PI 3-Kinase Mutant Mice. Science, 2002, 297, 1031 -4.	12.6	836
113	Cellular Function of Phosphoinositide 3-Kinases: Implications for Development, Immunity, Homeostasis, and Cancer. Annual Review of Cell and Developmental Biology, 2001, 17, 615-675.	9.4	1,047
114	A point mutation in CD28 distinguishes proliferative signals from survival signals. Nature Immunology, 2001, 2, 325-332.	14.5	187
115	Socs1 binds to multiple signalling proteins and suppresses Steel factor-dependent proliferation. EMBO Journal, 1999, 18, 904-915.	7.8	192
116	Grb2 Forms an Inducible Protein Complex with CD28 through a Src Homology 3 Domain-Proline Interaction. Journal of Biological Chemistry, 1998, 273, 21194-21202.	3.4	63
117	Acute Streptococcus pneumoniae lung infection: Mouse model and characterisation of the immune response Protocol Exchange, 0, , .	0.3	3
118	CD28. The AFCS-nature Molecule Pages, 0, , .	0.2	0