
Seth A Ament

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/690716/publications.pdf Version: 2024-02-01

SETU Δ ΔΜΕΝΙΤ

#	Article	IF	CITATIONS
1	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	27.8	361
2	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	27.8	316
3	Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4226-4231.	7.1	289
4	A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature, 2021, 598, 103-110.	27.8	166
5	Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18020-18025.	7.1	156
6	Single-cell epigenomics reveals mechanisms of human cortical development. Nature, 2021, 598, 205-213.	27.8	154
7	Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3576-3581.	7.1	152
8	Quantitative peptidomics reveal brain peptide signatures of behavior. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2383-2388.	7.1	125
9	Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. Nature Communications, 2020, 11, 1499.	12.8	125
10	Nutritional regulation of division of labor in honey bees: toward a systems biology perspective. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 566-576.	6.6	100
11	gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nature Methods, 2021, 18, 843-844.	19.0	100
12	Mechanisms of stable lipid loss in a social insect. Journal of Experimental Biology, 2011, 214, 3808-3821.	1.7	88
13	The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression. PLoS Genetics, 2012, 8, e1002596.	3.5	74
14	Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3095-3100.	7.1	61
15	Transcriptional regulatory networks underlying gene expression changes in Huntington's disease. Molecular Systems Biology, 2018, 14, e7435.	7.2	55
16	New meta-analysis tools reveal common transcriptional regulatory basis for multiple determinants of behavior. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1801-10.	7.1	52
17	Genome-Scale Transcriptional Regulatory Network Models of Psychiatric and Neurodegenerative Disorders. Cell Systems, 2019, 8, 122-135.e7.	6.2	45
18	Rediscovering the value of families for psychiatric genetics research. Molecular Psychiatry, 2019, 24, 523-535.	7.9	43

SETH A AMENT

#	Article	IF	CITATIONS
19	Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. PLoS Genetics, 2020, 16, e1009025.	3.5	42
20	High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds. Human Molecular Genetics, 2017, 26, 913-922.	2.9	37
21	Single-Nucleus RNA-Seq Reveals Dysregulation of Striatal Cell Identity Due to Huntington's Disease Mutations. Journal of Neuroscience, 2021, 41, 5534-5552.	3.6	30
22	Atlas of Transcription Factor Binding Sites from ENCODE DNase Hypersensitivity Data across 27 Tissue Types. Cell Reports, 2020, 32, 108029.	6.4	28
23	Identification of copy number variants in whole-genome data using Reference Coverage Profiles. Frontiers in Genetics, 2015, 6, 45.	2.3	18
24	Diet and endocrine effects on behavioral maturation-related gene expression in the <i>pars intercerebralis</i> of the honey bee brain. Journal of Experimental Biology, 2015, 218, 4005-14.	1.7	17
25	Polarization Reflecting Iridophores in the Arms of the Squid Loligo pealeii. Biological Bulletin, 2001, 201, 201, 267-268.	1.8	16
26	Motivational, proteostatic and transcriptional deficits precede synapse loss, gliosis and neurodegeneration in the B6.HttQ111/+ model of Huntington's disease. Scientific Reports, 2017, 7, 41570.	3.3	16
27	Repeated sampling facilitates within- and between-subject modeling of the human sperm transcriptome to identify dynamic and stress-responsive sncRNAs. Scientific Reports, 2020, 10, 17498.	3.3	16
28	Peripheral huntingtin silencing does not ameliorate central signs of disease in the B6.HttQ111/+ mouse model of Huntington's disease. PLoS ONE, 2017, 12, e0175968.	2.5	13
29	Lipid Metabolism, Abdominal Adiposity, and Cerebral Health in the Amish. Obesity, 2017, 25, 1876-1880.	3.0	8
30	Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder. European Neuropsychopharmacology, 2019, 29, 156-170.	0.7	7
31	Whole Genome Sequencing Identifies CRISPLD2 as a Lung Function Gene in Children With Asthma. Chest, 2019, 156, 1068-1079.	0.8	5
32	Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder. Molecular Psychiatry, 2022, 27, 3842-3856.	7.9	5
33	Clinical and genetic validity of quantitative bipolarity. Translational Psychiatry, 2019, 9, 228.	4.8	4
34	Multiple dimensions of stress vs. genetic effects on depression. Translational Psychiatry, 2021, 11, 254.	4.8	4
35	Genetic versus stress and mood determinants of sleep in the Amish. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 113-121.	1.7	2
36	41. A RARE VARIANT IN D-AMINO ACID OXIDASE IMPLICATES NMDA RECEPTOR SIGNALING AND CEREBELLAR GENE NETWORKS IN RISK FOR BIPOLAR DISORDER. European Neuropsychopharmacology, 2021, 51, e63.	0.7	1

SETH A AMENT

#	Article	IF	CITATIONS
37	Early and Late Transcriptional Changes in Blood, Neural, and Colon Tissues in Rat Models of Stress-Induced and Comorbid Pain Hypersensitivity Reveal Regulatory Roles in Neurological Disease. Frontiers in Pain Research, 2022, 3, .	2.0	1
38	B18â€Transcriptome profiling of B6.HttQ111/+ hepatocytes in response to chemical perturbagens. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A15.2-A15.	1.9	0
39	VARIANTS IN THE PROMOTER OF TRKB ARE ASSOCIATED WITH A GOOD RESPONSE TO LITHIUM IN BIPOLAR DISORDER. European Neuropsychopharmacology, 2019, 29, S965.	0.7	0
40	NeMO analyticsâ€AD: The neuroscience multiâ€omic visualization and analysis platform, now extended to support Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e046097.	0.8	0
41	Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. , 2020, 16, e1009025.		0
42	Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. , 2020, 16, e1009025.		0
43	Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. , 2020, 16, e1009025.		0
44	Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. , 2020, 16, e1009025.		0
45	NeMO-AD, a new neuroscience multi-omic visualization and analysis platform for Alzheimer's disease research Alzheimer's and Dementia, 2021, 17 Suppl 3, e055686.	0.8	0