Jeremy O Richardson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6907114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunnelling assisted hydrogen elimination mechanisms of FeCl3/TEMPO. Chemical Communications, 2022, 58, 565-568.	4.1	5
2	A partially linearized spin-mapping approach for simulating nonlinear optical spectra. Journal of Chemical Physics, 2022, 156, 024108.	3.0	15
3	Instanton theory for Fermi's golden rule and beyond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200378.	3.4	12
4	Quantum Tunnelling Driven H ₂ Formation on Graphene. Journal of Physical Chemistry Letters, 2022, 13, 3173-3181.	4.6	10
5	Molecular-Level Insights on Reactive Arrangement in On-Surface Photocatalytic Coupling Reactions Using Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2022, 144, 538-546.	13.7	29
6	Nonadiabatic instanton rate theory beyond the golden-rule limit. Journal of Chemical Physics, 2022, 156, 174115.	3.0	9
7	Explaining the Efficiency of Photosynthesis: Quantum Uncertainty or Classical Vibrations?. Journal of Physical Chemistry Letters, 2022, 13, 3392-3399.	4.6	16
8	Heavyâ€Atom Quantum Tunnelling in Spin Crossovers of Nitrenes**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
9	Instanton calculations of tunneling splittings in chiral molecules. Journal of Computational Chemistry, 2021, 42, 210-221.	3.3	11
10	Microcanonical Tunneling Rates from Density-of-States Instanton Theory. Journal of Chemical Theory and Computation, 2021, 17, 40-55.	5.3	10
11	Quantum Dynamics in Water Clusters. , 2021, , 301-326.		6
12	Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling. Journal of the American Chemical Society, 2021, 143, 20952-20961.	13.7	17
13	Quantum Entanglement from Classical Trajectories. Physical Review Letters, 2021, 127, 250403.	7.8	9
14	Quantum tunnelling pathways of the water pentamer. Physical Chemistry Chemical Physics, 2020, 22, 1035-1044.	2.8	23
15	Calculations of quantum tunnelling rates for muonium reactions with methane, ethane and propane. Physical Chemistry Chemical Physics, 2020, 22, 16843-16854.	2.8	10
16	A partially linearized spin-mapping approach for nonadiabatic dynamics. II. Analysis and comparison with related approaches. Journal of Chemical Physics, 2020, 153, 194110.	3.0	20
17	Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst. Nature Catalysis, 2020, 3, 834-842.	34.4	84
18	Instanton theory of tunneling in molecules with asymmetric isotopic substitutions. Journal of Chemical Physics, 2020, 153, 094101.	3.0	14

JEREMY O RICHARDSON

#	Article	IF	CITATIONS
19	Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Electronically Nonadiabatic Molecular Dynamics. Journal of Chemical Theory and Computation, 2020, 16, 2883-2895.	5.3	44
20	Origins of fast diffusion of water dimers on surfaces. Nature Communications, 2020, 11, 1689.	12.8	39
21	Semiclassical instanton formulation of Marcus–Levich–Jortner theory. Journal of Chemical Physics, 2020, 152, 244117.	3.0	17
22	Generalized spin mapping for quantum-classical dynamics. Journal of Chemical Physics, 2020, 152, 084110.	3.0	53
23	Revisiting nuclear tunnelling in the aqueous ferrous–ferric electron transfer. Physical Chemistry Chemical Physics, 2020, 22, 10687-10698.	2.8	7
24	Instanton formulation of Fermi's golden rule in the Marcus inverted regime. Journal of Chemical Physics, 2020, 152, 034106.	3.0	27
25	A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory. Journal of Chemical Physics, 2020, 153, 194109.	3.0	26
26	Spin-mapping approach for nonadiabatic molecular dynamics. Journal of Chemical Physics, 2019, 151, 044119.	3.0	52
27	Semiclassical analysis of the quantum instanton approximation. Journal of Chemical Physics, 2019, 151, 144111.	3.0	12
28	Divide-and-Conquer Method for Instanton Rate Theory. Journal of Chemical Theory and Computation, 2019, 15, 2816-2825.	5.3	7
29	Ion-mediated hydrogen-bond rearrangement through tunnelling in the iodide–dihydrate complex. Nature Chemistry, 2019, 11, 367-374.	13.6	55
30	On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics. Journal of Chemical Physics, 2019, 150, 071101.	3.0	46
31	Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems. Journal of Chemical Physics, 2019, 150, 104107.	3.0	15
32	Nonadiabatic quantum transition-state theory in the golden-rule limit. II. Overcoming the pitfalls of the saddle-point and semiclassical approximations. Journal of Chemical Physics, 2019, 151, 214101.	3.0	9
33	Elucidating the Nuclear Quantum Dynamics of Intramolecular Double Hydrogen Transfer in Porphycene. Journal of the American Chemical Society, 2019, 141, 2526-2534.	13.7	68
34	i-PI 2.0: A universal force engine for advanced molecular simulations. Computer Physics Communications, 2019, 236, 214-223.	7.5	220
35	Improved population operators for multi-state nonadiabatic dynamics with the mixed quantum-classical mapping approach. Faraday Discussions, 2019, 221, 150-167.	3.2	33
36	Effects of tunnelling and asymmetry for system-bath models of electron transfer. Journal of Chemical Physics, 2018, 148, 102311.	3.0	19

JEREMY O RICHARDSON

#	Article	IF	CITATIONS
37	Quantum dynamics of isolated molecules: general discussion. Faraday Discussions, 2018, 212, 281-306.	3.2	Ο
38	Ring-polymer instanton theory. International Reviews in Physical Chemistry, 2018, 37, 171-216.	2.3	68
39	Perspective: Ring-polymer instanton theory. Journal of Chemical Physics, 2018, 148, 200901.	3.0	73
40	<i>Ab initio</i> instanton rate theory made efficient using Gaussian process regression. Faraday Discussions, 2018, 212, 237-258.	3.2	48
41	Understanding Chemical Reactions beyond Transition-State Theory. Chimia, 2018, 72, 309.	0.6	3
42	Full- and reduced-dimensionality instanton calculations of the tunnelling splitting in the formic acid dimer. Physical Chemistry Chemical Physics, 2017, 19, 966-970.	2.8	49
43	Simultaneous Deep Tunneling and Classical Hopping for Hydrogen Diffusion on Metals. Physical Review Letters, 2017, 119, 126001.	7.8	46
44	An analysis of nonadiabatic ring-polymer molecular dynamics and its application to vibronic spectra. Chemical Physics, 2017, 482, 124-134.	1.9	40
45	Kinetic isotope effects and how to describe them. Structural Dynamics, 2017, 4, 061501.	2.3	37
46	Non-adiabatic reactions: general discussion. Faraday Discussions, 2016, 195, 311-344.	3.2	15
47	Derivation of instanton rate theory from first principles. Journal of Chemical Physics, 2016, 144, 114106.	3.0	76
48	Quantum Tunneling Rates of Gas-Phase Reactions from On-the-Fly Instanton Calculations. Journal of Physical Chemistry Letters, 2016, 7, 4374-4379.	4.6	49
49	Microcanonical and thermal instanton rate theory for chemical reactions at all temperatures. Faraday Discussions, 2016, 195, 49-67.	3.2	36
50	Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science, 2016, 351, 1310-1313.	12.6	256
51	Semiclassical Green's functions and an instanton formulation of electron-transfer rates in the nonadiabatic limit. Journal of Chemical Physics, 2015, 143, 134115.	3.0	40
52	Ring-polymer instanton theory of electron transfer in the nonadiabatic limit. Journal of Chemical Physics, 2015, 143, 134116.	3.0	39
53	Non-oscillatory flux correlation functions for efficient nonadiabatic rate theory. Journal of Chemical Physics, 2014, 141, 074106.	3.0	25
54	Stress Test for Quantum Dynamics Approximations: Deep Tunneling in the Muonium Exchange Reaction D + HMu → DMu + H. Journal of Physical Chemistry Letters, 2014, 5, 4219-4224.	4.6	64

#	Article	IF	CITATIONS
55	Investigation of Terahertz Vibration–Rotation Tunneling Spectra for the Water Octamer. Journal of Physical Chemistry A, 2013, 117, 6960-6966.	2.5	52
56	Communication: Nonadiabatic ring-polymer molecular dynamics. Journal of Chemical Physics, 2013, 139, 031102.	3.0	115
57	Ring-polymer instanton method for calculating tunneling splittings. Journal of Chemical Physics, 2011, 134, 054109.	3.0	98
58	Instanton calculations of tunneling splittings for water dimer and trimer. Journal of Chemical Physics, 2011, 135, 124109.	3.0	80
59	Ring-polymer molecular dynamics rate-theory in the deep-tunneling regime: Connection with semiclassical instanton theory. Journal of Chemical Physics, 2009, 131, 214106.	3.0	242
60	Heavyâ€Atom Quantum Tunnelling in Spin Crossovers of Nitrenes. Angewandte Chemie, 0, , .	2.0	0