Huawei Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6906835/publications.pdf

Version: 2024-02-01

49 1,483 20 38 papers citations h-index g-index

52 52 52 2085 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Growth, structural, optical and electronic transport properties of tetragonal CH ₃ NH ₃ SnBr ₃ perovskite single crystals. Dalton Transactions, 2022, 51, 4623-4626.	3.3	3
2	Synthesis, structure, mobility and memristor properties of tetragonal CH ₃ NH ₃ PbBr ₃ perovskite single crystals. Dalton Transactions, 2021, 50, 10365-10368.	3.3	3
3	Surface self-reconstructed amorphous/crystalline hybrid iron disulfide for high-efficiency water oxidation electrocatalysis. Dalton Transactions, 2021, 50, 6333-6342.	3.3	9
4	Temperature Sensitive and Reversible Halide Ion Exchange in Inorganic–Organic Hybrid CH3NH3PbI3â^'xBrx Mixed-Halide Perovskite. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 670-674.	0.5	0
5	Metallized Ni(OH) < sub > 2 < /sub > ·NiO/FeOOH on Ni Foam as a Highly Effective Water Oxidation Catalyst Prepared by Surface Treatment: Oxidation–Corrosion Equilibrium. ACS Applied Energy Materials, 2021, 4, 5599-5605.	5.1	2
6	Organic–inorganic hybrid (CH ₃ NH ₃) ₂ FeCul ₄ Cl ₂ and (CH ₃ NH ₃) ₂ InCul ₆ for ultraviolet light photodetectors. Chemical Communications, 2020, 56, 1875-1878.	4.1	15
7	Design bifunctional nitrogen doped flexible carbon sphere electrode for dye-sensitized solar cell and supercapacitor. Electrochimica Acta, 2020, 334, 135582.	5.2	23
8	Carbon Counter Electrodes in Dyeâ€Sensitized and Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1906451.	14.9	74
9	Wide Band Gap Organic–Inorganic Hybrid (CH ₃ NH ₃) ₂ HgCl ₄ as Selfâ€Driven Ultraviolet Photodetector and Photoconductor. Applied Organometallic Chemistry, 2020, 34, e5982.	3.5	1
10	FeS ₂ crystal lattice promotes the nanostructure and enhances the electrocatalytic performance of WS ₂ nanosheets for the oxygen evolution reaction. Dalton Transactions, 2020, 49, 9804-9810.	3.3	17
11	Design bifunctional vanadium carbide embedded in mesoporous carbon electrode for supercapacitor and dye-sensitized solar cell. Solar Energy, 2020, 206, 848-854.	6.1	15
12	Encapsulation of UV Glue, Hydrophobicity of Binder and Carbon Electrode Enhance the Stability of Organic–Inorganic Hybrid Perovskite Solar Cells up to 5 Years. Energy Technology, 2020, 8, 2000513.	3.8	17
13	Synthesis, Crystal Structure and Photoelectric Response of Allâ€Inorganic Copper Halide Salts CsCuCl ₃ . European Journal of Inorganic Chemistry, 2020, 2020, 2165-2169.	2.0	12
14	Highly Effective 2D Layer Structured Titanium Carbide Electrode for Dyeâ€Sensitized and Perovskite Solar Cells. ChemElectroChem, 2020, 7, 1149-1154.	3.4	22
15	Faceâ€Type Coupling as an Ideal Interface Synergy between the Nb ₂ O ₅ Crystal Lattice and Graphene for Energy Conversion. ChemistrySelect, 2020, 5, 2508-2515.	1.5	1
16	Synthesis, crystal structure and photoresponse of tetragonal phase single crystal CH ₃ NH ₃ PbCl ₃ . Chemical Communications, 2020, 56, 6404-6407.	4.1	13
17	Semi-Transparent and Stable Solar Cells for Building Integrated Photovoltaics: The Confinement Effects of the Polymer Gel Electrolyte inside Mesoporous Films. ACS Omega, 2019, 4, 15097-15100.	3.5	3
18	Economically viable V2O3@activated carbon composite materials as counter electrodes for dye sensitized solar cells by single step reduction. Journal of Electroanalytical Chemistry, 2019, 835, 150-155.	3.8	15

#	Article	IF	Citations
19	Hierarchical mesoporous MoO2 sphere as highly effective supercapacitor electrode. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 212-217.	5.3	20
20	PEDOT@4Aâ€Molecular Sieve Composite Electrode for Supercapacitor. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900188.	1.8	2
21	One Simple Strategy towards Nitrogen and Oxygen Codoped Carbon Nanotube for Efficient Electrocatalytic Oxygen Reduction and Evolution. Catalysts, 2019, 9, 159.	3.5	9
22	Synthesis, crystal structure, absorption properties, photoelectric behavior of organic–inorganic hybrid (CH ₃ NH ₃) ₂ CoCl ₄ . Applied Organometallic Chemistry, 2019, 33, e4795.	3 . 5	15
23	Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes. Electrochimica Acta, 2019, 298, 552-560.	5.2	37
24	Edge/Defectâ€Rich, Metallic, and Oxygenâ€Heteroatomâ€Doped WS ₂ Superstructure with Superior Electrocatalytic Performance for Green Solar Energy Conversion. ChemSusChem, 2019, 12, 795-800.	6.8	23
25	2D Schottky Junction between Graphene Oxide and Transitionâ€Metal Dichalcogenides: Photoresponsive Properties and Electrocatalytic Performance. Advanced Materials Interfaces, 2019, 6, 1801657.	3.7	13
26	Polydopamineâ€Derived, In Situ Nâ€Doped 3D Mesoporous Carbons for Highly Efficient Oxygen Reduction. ChemNanoMat, 2018, 4, 417-422.	2.8	19
27	Earth-abundant Fe _{1â^'x} S@S-doped graphene oxide nanoâ€"micro composites as high-performance cathode catalysts for green solar energy utilization: fast interfacial electron exchange. RSC Advances, 2018, 8, 4340-4347.	3.6	13
28	Band-Gap Tuning of Organic–Inorganic Hybrid Palladium Perovskite Materials for a Near-Infrared Optoelectronics Response. ACS Omega, 2018, 3, 13960-13966.	3.5	29
29	Synthesis, Crystal Structure, UV–Vis Adsorption Properties, Photoelectric Behavior, and DFT Computational Study of All-Inorganic and Lead-Free Copper Halide Salt K ₂ Cu ₂ Cl ₆ . ACS Omega, 2018, 3, 14021-14026.	3.5	17
30	Fixation of CO ₂ along with bromopyridines on a silver electrode. Royal Society Open Science, 2018, 5, 180897.	2.4	10
31	Tuning Ni-Foam into NiOOH/FeOOH Heterostructures toward Superior Water Oxidation Catalyst via Three-Step Strategy. ACS Omega, 2018, 3, 11009-11017.	3.5	29
32	A flexible 3-D structured carbon molecular sieve@PEDOT composite electrode for supercapacitor. Journal of Electroanalytical Chemistry, 2018, 826, 191-197.	3.8	9
33	Earth-abundant and environment friendly organic–inorganic hybrid tetrachloroferrate salt CH ₃ NH ₃ FeCl ₄ : structure, adsorption properties and photoelectric behavior. RSC Advances, 2018, 8, 19958-19963.	3.6	21
34	Low defects, large area and high stability of all-inorganic lead halide perovskite CsPbBr ₃ thin films with micron-grains <i>via</i> heat-spraying process for self-driven photodetector. RSC Advances, 2018, 8, 29089-29095.	3.6	21
35	A novel composite of W ₁₈ O ₄₉ nanorods on reduced graphene oxide sheets based on in situ synthesis and catalytic performance for oxygen reduction reaction. RSC Advances, 2017, 7, 2051-2057.	3.6	16
36	Lead-free and amorphous organic–inorganic hybrid materials for photovoltaic applications: mesoscopic CH3NH3MnI3/TiO2 heterojunction. RSC Advances, 2017, 7, 37419-37425.	3.6	24

#	Article	IF	CITATIONS
37	From two-dimensional graphene oxide to three-dimensional honeycomb-like Ni ₃ S ₂ @graphene oxide composite: insight into structure and electrocatalytic properties. Royal Society Open Science, 2017, 4, 171409.	2.4	14
38	Layered and Pb-Free Organic–Inorganic Perovskite Materials for Ultraviolet Photoresponse: (010)-Oriented (CH ₃ NH ₃) ₂ MnCl ₄ Thin Film. ACS Applied Materials & District Subs (2016), 8, 28187-28193.	8.0	54
39	Indium- and Platinum-Free Counter Electrode for Green Mesoscopic Photovoltaics through Graphene Electrode and Graphene Composite Catalysts: Interfacial Compatibility. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5314-5319.	8.0	33
40	Earth-abundant and nano-micro composite catalysts of Fe ₃ O ₄ @reduced graphene oxide for green and economical mesoscopic photovoltaic devices with high efficiencies up to 9%. Journal of Materials Chemistry A, 2016, 4, 67-73.	10.3	65
41	Low-Temperature Processed and Carbon-Based ZnO/CH ₃ NH ₃ Pbl ₃ /C Planar Heterojunction Perovskite Solar Cells. Journal of Physical Chemistry C, 2015, 119, 4600-4605.	3.1	153
42	Antisolvent diffusion-induced growth, equilibrium behaviours in aqueous solution and optical properties of CH ₃ NH ₃ PbI ₃ single crystals for photovoltaic applications. RSC Advances, 2015, 5, 85344-85349.	3.6	38
43	Interlaced W ₁₈ O ₄₉ nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 4347-4354.	10.3	58
44	High electrocatalytic activity of W ₁₈ O ₄₉ nanowires for cobalt complex and ferrocenium redox mediators. RSC Advances, 2014, 4, 42190-42196.	3.6	7
45	Surface Oxygen Vacancy-Dependent Electrocatalytic Activity of W ₁₈ O ₄₉ Nanowires. Journal of Physical Chemistry C, 2014, 118, 20100-20106.	3.1	62
46	Hole-Conductor-Free, Metal-Electrode-Free TiO ₂ 2/CH ₃ NH ₃ PbI ₃ Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. Journal of Physical Chemistry Letters, 2014, 5, 3241-3246.	4.6	258
47	Notable catalytic activity of oxygen-vacancy-rich WO2.72 nanorod bundles as counter electrodes for dye-sensitized solar cells. Chemical Communications, 2013, 49, 7626.	4.1	76
48	Economical hafnium oxygen nitride binary/ternary nanocomposite counter electrode catalysts for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1341-1348.	10.3	65
49	Printable fabrication of Pt-and-ITO free counter electrodes for completely flexible quasi-solid dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 3932.	10.3	28