Neil Kaplowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6904807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endoplasmic reticulum stress in liver diseases. Hepatology, 2023, 77, 619-639.	7.3	63
2	The gut microbial metabolite, 3,4-dihydroxyphenylpropionic acid, alleviates hepatic ischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity in mice. Acta Pharmaceutica Sinica B, 2022, 12, 182-196.	12.0	22
3	Introducing Laurie DeLeve, M.D., Ph.D., Our 2022 AASLD President. Hepatology, 2022, 75, 514-517.	7.3	0
4	Clinical Characteristics and Outcome of Drugâ€Induced Liver Injury in the Older Patients: From the Youngâ€Old to the Oldestâ€Old. Clinical Pharmacology and Therapeutics, 2021, 109, 1147-1158.	4.7	16
5	IgG:IgM Ratios of Liver Plasma Cells Reveal Similar Phenotypes of Primary Biliary Cholangitis With and Without Features of Autoimmune Hepatitis. Clinical Gastroenterology and Hepatology, 2021, 19, 397-399.	4.4	8
6	Alcohol, Fasting, and Therapeutic Dosing of Acetaminophen: A Perfect Storm. Hepatology, 2021, 73, 1634-1636.	7.3	12
7	Hepatic Mitochondrial SAB Deletion or Knockdown Alleviates Dietâ€Induced Metabolic Syndrome, Steatohepatitis, and Hepatic Fibrosis. Hepatology, 2021, 74, 3127-3145.	7.3	24
8	Key Characteristics of Human Hepatotoxicants as a Basis for Identification and Characterization of the Causes of Liver Toxicity. Hepatology, 2021, 74, 3486-3496.	7.3	29
9	Comprehensive analysis and insights gained from long-term experience of the Spanish DILI Registry. Journal of Hepatology, 2021, 75, 86-97.	3.7	72
10	Intestinal Epithelial Chemokine (C-C Motif) Ligand 7 Overexpression Enhances Acetaminophen-Induced Hepatotoxicity in Mice. American Journal of Pathology, 2020, 190, 57-67.	3.8	13
11	Markedly Elevated Serum Aspartate Aminotransferase to Alanine Aminotransferase Ratio: A Clue to Hepatic Neoplasia. Hepatology Communications, 2020, 4, 1099-1101.	4.3	0
12	Acetaminophen Hepatotoxicity: Strong Offense and Weakened Defense. Hepatology, 2020, 71, 1530-1532.	7.3	4
13	Gut Microbiota and Liver Injury (I)—Acute Liver Injury. Advances in Experimental Medicine and Biology, 2020, 1238, 23-37.	1.6	6
14	Evaluation of the effect of sodium–glucose coâ€ŧransporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPERORâ€Reduced trial. European Journal of Heart Failure, 2019, 21, 1270-1278.	7.1	155
15	Evaluation of the effects of sodium–glucose coâ€transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPERORâ€Preserved Trial. European Journal of Heart Failure, 2019, 21, 1279-1287.	7.1	205
16	Drug-induced liver injury. Nature Reviews Disease Primers, 2019, 5, 58.	30.5	409
17	Rationale and design of the EMPERIALâ€Preserved and EMPERIALâ€Reduced trials of empagliflozin in patients with chronic heart failure. European Journal of Heart Failure, 2019, 21, 932-942.	7.1	40
18	EASL Clinical Practice Guidelines: Drug-induced liver injury. Journal of Hepatology, 2019, 70, 1222-1261.	3.7	629

#	Article	IF	CITATIONS
19	Expression of mitochondrial membrane–linked SAB determines severity of sex-dependent acute liver injury. Journal of Clinical Investigation, 2019, 129, 5278-5293.	8.2	26
20	Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. Journal of Hepatology, 2018, 69, 51-59.	3.7	178
21	The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox Biology, 2018, 14, 164-177.	9.0	59
22	New insights into the role and mechanism of câ€Junâ€Nâ€terminal kinase signaling in the pathobiology of liver diseases. Hepatology, 2018, 67, 2013-2024.	7.3	125
23	Niacinâ€Induced Anicteric Microvesicular Steatotic Acute Liver Failure. Hepatology Communications, 2018, 2, 1293-1298.	4.3	14
24	The Regulation of JNK Signaling Pathways in Cell Death through the Interplay with Mitochondrial SAB and Upstream Post-Translational Effects. International Journal of Molecular Sciences, 2018, 19, 3657.	4.1	50
25	Glycycoumarin protects mice against acetaminophenâ€induced liver injury predominantly <i>via</i> activating sustained autophagy. British Journal of Pharmacology, 2018, 175, 3747-3757.	5.4	48
26	Herb-Induced Liver Injury: A Global Concern. Chinese Journal of Integrative Medicine, 2018, 24, 643-644.	1.6	9
27	Protective role of p53 in acetaminophen hepatotoxicity. Free Radical Biology and Medicine, 2017, 106, 111-117.	2.9	37
28	Cell Death in Drug-Induced Liver Injury. , 2017, , 1-35.		1
29	Death and liver transplantation within 2 years of onset of drugâ€induced liver injury. Hepatology, 2017, 66, 1275-1285.	7.3	96
30	Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2862-E2871.	7.1	84
31	Heparan sulfate promotes recovery from acute liver injury: Inhibition of progressive cell death or enhanced regeneration?. Hepatology, 2017, 66, 1381-1383.	7.3	1
32	The role of MAP2 kinases and p38 kinase in acute murine liver injury models. Cell Death and Disease, 2017, 8, e2903-e2903.	6.3	53
33	Antcin H Protects Against Acute Liver Injury Through Disruption of the Interaction of c-Jun-N-Terminal Kinase with Mitochondria. Antioxidants and Redox Signaling, 2017, 26, 207-220.	5.4	38
34	Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free Radical Biology and Medicine, 2017, 102, 100-110.	2.9	35
35	Prediction of histologic alcoholic hepatitis based on clinical presentation limits the need for liver biopsy. Hepatology Communications, 2017, 1, 1070-1084.	4.3	18
36	Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis. International Journal of Molecular Sciences, 2017, 18, 1018.	4.1	205

#	Article	IF	CITATIONS
37	Mechanisms of adaptation and progression in idiosyncratic drug induced liver injury, clinical implications. Liver International, 2016, 36, 158-165.	3.9	103
38	The many faces of RIPK3: What about NASH?. Hepatology, 2016, 64, 1411-1413.	7.3	4
39	Reply. Hepatology, 2016, 64, 312-313.	7.3	0
40	Reply. Hepatology, 2016, 64, 308-309.	7.3	1
41	câ€Jun Nâ€ŧerminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)â€dependent pathway leading to inactivation of intramitochondrial Src. Hepatology, 2016, 63, 1987-2003.	7.3	146
42	Questions and controversies: the role of necroptosis in liver disease. Cell Death Discovery, 2016, 2, 16089.	4.7	81
43	Definition and risk factors for chronicity following acute idiosyncratic drug-induced liver injury. Journal of Hepatology, 2016, 65, 532-542.	3.7	115
44	Knockdown of RIPK1 Markedly Exacerbates Murine Immune-Mediated Liver Injury through Massive Apoptosis of Hepatocytes, Independent of Necroptosis and Inhibition of NF-κB. Journal of Immunology, 2016, 197, 3120-3129.	0.8	52
45	Lysosomal Cholesterol Accumulation Sensitizes To Acetaminophen Hepatotoxicity by Impairing Mitophagy. Scientific Reports, 2016, 5, 18017.	3.3	49
46	<i>HLA-B</i> *57:01 Confers Susceptibility to Pazopanib-Associated Liver Injury in Patients with Cancer. Clinical Cancer Research, 2016, 22, 1371-1377.	7.0	80
47	A murder mystery in the liver: who done it and how?. Journal of Clinical Investigation, 2016, 126, 4068-4071.	8.2	14
48	Competing Mechanistic Hypotheses of Acetaminophen-Induced Hepatotoxicity Challenged by Virtual Experiments. PLoS Computational Biology, 2016, 12, e1005253.	3.2	22
49	Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis. Hepatology, 2015, 62, 1847-1857.	7.3	152
50	Inhibition of immune tolerance unmasks drugâ€induced allergic hepatitis. Hepatology, 2015, 62, 346-348.	7.3	16
51	Characterisation of liver chemistry abnormalities associated with pazopanib monotherapy: A systematic review and meta-analysis of clinical trials in advanced cancer patients. European Journal of Cancer, 2015, 51, 1293-1302.	2.8	45
52	Alcoholic foamy degeneration and alcoholic fatty liver with jaundice: Often overlooked causes of jaundice and hepatic decompensation that can mimic alcoholic hepatitis. Clinical Liver Disease, 2015, 6, 145-148.	2.1	10
53	Reply. Gastroenterology, 2015, 148, 452-453.	1.3	0
54	Acid sphingomyelinase-ceramide system in steatohepatitis: A novel target regulating multiple pathways. Journal of Hepatology, 2015, 62, 219-233.	3.7	66

#	Article	IF	CITATIONS
55	Targeting signal transduction pathways which regulate necrosis in acetaminophen hepatotoxicity. Journal of Hepatology, 2015, 63, 5-7.	3.7	24
56	Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. Journal of Hepatology, 2015, 62, 1367-1374.	3.7	108
57	Features and Outcomes of 899 Patients With Drug-Induced Liver Injury: The DILIN Prospective Study. Gastroenterology, 2015, 148, 1340-1352.e7.	1.3	646
58	Clinical Pattern of Tolvaptan-Associated Liver Injury in Subjects with Autosomal Dominant Polycystic Kidney Disease: Analysis of Clinical Trials Database. Drug Safety, 2015, 38, 1103-1113.	3.2	155
59	Reply. Gastroenterology, 2014, 147, 1442.	1.3	0
60	Protein kinase C (PKC) participates in acetaminophen hepatotoxicity through c-jun-N-terminal kinase (JNK)-dependent and -independent signaling pathways. Hepatology, 2014, 59, 1543-1554.	7.3	80
61	Use of Hy's Law and a New Composite Algorithm to Predict Acute Liver Failure in Patients With Drug-Induced Liver Injury. Gastroenterology, 2014, 147, 109-118.e5.	1.3	248
62	Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance. Gastroenterology, 2014, 147, 765-783.e4.	1.3	587
63	ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. Journal of Hepatology, 2014, 61, 1126-1134.	3.7	89
64	Respiratory Substrates Regulate S-Nitrosylation of Mitochondrial Proteins through a Thiol-Dependent Pathway. Chemical Research in Toxicology, 2014, 27, 794-804.	3.3	57
65	Mechanisms of Drug-induced Liver Injury. Clinics in Liver Disease, 2013, 17, 507-518.	2.1	241
66	Role of Mitochondria in Alcoholic Liver Disease. Current Pathobiology Reports, 2013, 1, 159-168.	3.4	51
67	ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. Journal of Hepatology, 2013, 59, 805-813.	3.7	89
68	Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends in Pharmacological Sciences, 2013, 34, 243-253.	8.7	157
69	Avoiding idiosyncratic DILI: Two is better than one. Hepatology, 2013, 58, 15-17.	7.3	44
70	Dynamic Adaptation of Liver Mitochondria to Chronic Alcohol Feeding in Mice. Journal of Biological Chemistry, 2012, 287, 42165-42179.	3.4	69
71	Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. Journal of Hepatology, 2012, 57, 852-859.	3.7	70
72	Investigation of chronic alcohol consumption in rodents via ultra-high-performance liquid chromatography–mass spectrometry based metabolite profiling. Journal of Chromatography A, 2012, 1259, 128-137.	3.7	22

#	Article	IF	CITATIONS
73	Interstrain differences in liver injury and one-carbon metabolism in alcohol-fed mice. Hepatology, 2012, 56, 130-139.	7.3	52
74	Dealing with stress. Hepatology, 2012, 55, 3-13.	7.3	7
75	Current Challenges and Controversies in Drug-Induced Liver Injury. Drug Safety, 2012, 35, 1099-1117.	3.2	18
76	Metabonomic Investigation of Liver Profiles of Nonpolar Metabolites Obtained from Alcohol-Dosed Rats and Mice Using High Mass Accuracy MS ⁿ Analysis. Journal of Proteome Research, 2011, 10, 705-713.	3.7	59
77	Differential effect of gender on hepatic fat. Pediatric Radiology, 2011, 41, 1146-1153.	2.0	9
78	The contribution of endoplasmic reticulum stress to liver diseases. Hepatology, 2011, 53, 1752-1763.	7.3	309
79	Liver-specific loss of glucose-regulated protein 78 perturbs the unfolded protein response and exacerbates a spectrum of liver diseases in mice. Hepatology, 2011, 54, 229-239.	7.3	125
80	Role of cAMP-responsive Element-binding Protein (CREB)-regulated Transcription Coactivator 3 (CRTC3) in the Initiation of Mitochondrial Biogenesis and Stress Response in Liver Cells. Journal of Biological Chemistry, 2011, 286, 22047-22054.	3.4	63
81	c-Jun N-terminal Kinase (JNK)-dependent Acute Liver Injury from Acetaminophen or Tumor Necrosis Factor (TNF) Requires Mitochondrial Sab Protein Expression in Mice. Journal of Biological Chemistry, 2011, 286, 35071-35078.	3.4	159
82	Differences in betaine-homocysteine methyltransferase expression, endoplasmic reticulum stress response, and liver injury between alcohol-fed mice and rats. Hepatology, 2010, 51, 796-805.	7.3	63
83	Mechanisms of Pathogenesis in Drug Hepatotoxicity Putting the Stress on Mitochondria. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2010, 10, 98-111.	3.4	76
84	Regulation of Mitochondrial Glutathione Redox Status and Protein Glutathionylation by Respiratory Substrates. Journal of Biological Chemistry, 2010, 285, 39646-39654.	3.4	160
85	Silencing Glycogen Synthase Kinase-3β Inhibits Acetaminophen Hepatotoxicity and Attenuates JNK Activation and Loss of Glutamate Cysteine Ligase and Myeloid Cell Leukemia Sequence 1. Journal of Biological Chemistry, 2010, 285, 8244-8255.	3.4	105
86	Genetic Risk Factors for Portopulmonary Hypertension in Patients with Advanced Liver Disease. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 835-842.	5.6	206
87	Phenotypic characterization of idiosyncratic drug-induced liver injury: The influence of age and sex. Hepatology, 2009, 49, 2001-2009.	7.3	266
88	Glutathione in liver diseases and hepatotoxicity. Molecular Aspects of Medicine, 2009, 30, 29-41.	6.4	286
89	Redox Regulation of Tumor Necrosis Factor Signaling. Antioxidants and Redox Signaling, 2009, 11, 2245-2263.	5.4	153
90	Clinical risk factors for portopulmonary hypertension. Hepatology, 2008, 48, 196-203.	7.3	239

#	Article	IF	CITATIONS
91	Effect of Transgenic Extrahepatic Expression of Betaineâ€Homocysteine Methyltransferase on Alcohol or Homocysteineâ€Induced Fatty Liver. Alcoholism: Clinical and Experimental Research, 2008, 32, 1049-1058.	2.4	51
92	Role of JNK Translocation to Mitochondria Leading to Inhibition of Mitochondria Bioenergetics in Acetaminophen-induced Liver Injury. Journal of Biological Chemistry, 2008, 283, 13565-13577.	3.4	461
93	Endoplasmic Reticulum Stress and Liver Injury. Seminars in Liver Disease, 2007, 27, 367-377.	3.6	143
94	Glutathione Depletion Down-regulates Tumor Necrosis Factor α-induced NF-κB Activity via lκB Kinase-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2007, 282, 29470-29481.	3.4	68
95	Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: summary of a symposium. American Journal of Clinical Nutrition, 2007, 86, 14-24.	4.7	168
96	Mechanisms of Drug-Induced Liver Disease. Clinics in Liver Disease, 2007, 11, 459-475.	2.1	145
97	Drug-Induced Liver Injury. Drug Safety, 2007, 30, 277-294.	3.2	303
98	Reply:. Hepatology, 2007, 45, 1589-1589.	7.3	2
99	Mechanisms of protection by the betaine-homocysteine methyltransferase/betaine system in HepG2 cells and primary mouse hepatocytes. Hepatology, 2007, 46, 1586-1596.	7.3	53
100	Drug Hepatotoxicity. Clinics in Liver Disease, 2006, 10, 207-217.	2.1	53
101	Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. Journal of Hepatology, 2006, 45, 717-724.	3.7	221
102	ER stress: Can the liver cope?. Journal of Hepatology, 2006, 45, 321-333.	3.7	164
103	Rules and laws of drug hepatotoxicity. Pharmacoepidemiology and Drug Safety, 2006, 15, 231-233.	1.9	31
104	Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, S7-S9.	2.8	106
105	Hydrogen peroxide and redox modulation sensitize primary mouse hepatocytes to TNF-induced apoptosis. Free Radical Biology and Medicine, 2006, 41, 627-639.	2.9	83
106	Liver biology and pathobiology. Hepatology, 2006, 43, S235-S238.	7.3	31
107	Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology, 2006, 43, 1220-1230.	7.3	298
108	Outcome of acute idiosyncratic drug-induced liver injury: Long-term follow-up in a hepatotoxicity registry. Hepatology, 2006, 44, 1581-1588.	7.3	267

#	Article	IF	CITATIONS
109	Aminotransferase Elevations in Healthy Adults Receiving 4 Grams of Acetaminophen Daily. JAMA - Journal of the American Medical Association, 2006, 296, 87.	7.4	557
110	Role of innate immunity in acetaminophen-induced hepatotoxicity. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 493-503.	3.3	109
111	Current concepts and controversies in the treatment of alcoholic hepatitis. World Journal of Gastroenterology, 2006, 12, 6909.	3.3	34
112	Idiosyncratic drug hepatotoxicity. Nature Reviews Drug Discovery, 2005, 4, 489-499.	46.4	916
113	Role of CHOP in Hepatic Apoptosis in the Murine Model of Intragastric Ethanol Feeding. Alcoholism: Clinical and Experimental Research, 2005, 29, 1496-1503.	2.4	154
114	Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicology and Applied Pharmacology, 2005, 204, 263-273.	2.8	248
115	Serum alanine aminotransferase in skeletal muscle diseases. Hepatology, 2005, 41, 380-382.	7.3	351
116	Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World Journal of Gastroenterology, 2004, 10, 1699.	3.3	181
117	Drug-Induced Liver Injury. Clinical Infectious Diseases, 2004, 38, S44-S48.	5.8	326
118	Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochemical Pharmacology, 2004, 67, 439-451.	4.4	177
119	Role of TNF-? in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology, 2004, 40, 442-451.	7.3	125
120	Acetaminophen hepatoxicity: What do we know, what don't we know, and what do we do next?. Hepatology, 2004, 40, 23-26.	7.3	126
121	Clinical Perspectives on Xenobioticâ€Induced Hepatotoxicity. Drug Metabolism Reviews, 2004, 36, 301-312.	3.6	102
122	Severe hepatotoxicity associated with the use of weight loss diet supplements containing ma huang or usnic acid. Journal of Hepatology, 2004, 41, 1062-1064.	3.7	98
123	Mechanisms for sensitization to TNF-induced apoptosis by acute glutathione depletion in murine hepatocytes. Hepatology, 2003, 37, 1425-1434.	7.3	134
124	Hepatic Reactions During Treatment of Multiple Sclerosis with Interferon-??-1a. Drug Safety, 2003, 26, 815-827.	3.2	92
125	Effect of Glutathione Depletion on Sites and Topology of Superoxide and Hydrogen Peroxide Production in Mitochondria. Molecular Pharmacology, 2003, 64, 1136-1144.	2.3	197
126	The Thiol Sensitivity of Glutathione Transport in Sidedness-Sorted Basolateral Liver Plasma Membrane and in Oatp1-Expressing HeLa Cell Membrane. Molecular Pharmacology, 2002, 61, 425-435.	2.3	23

#	Article	IF	CITATIONS
127	Biochemical and Cellular Mechanisms of Toxic Liver Injury. Seminars in Liver Disease, 2002, 22, 137-144.	3.6	229
128	Immune-mediated drug-induced liver disease. Clinics in Liver Disease, 2002, 6, 755-774.	2.1	188
129	CSH Transport in Immortalized Mouse Brain Endothelial Cells. Journal of Neurochemistry, 2002, 73, 390-399.	3.9	57
130	Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor-α-induced apoptosis in cultured mouse hepatocytes. Hepatology, 2002, 36, 55-64.	7.3	173
131	Drug-Induced Liver Disorders. Drug Safety, 2001, 24, 483-490.	3.2	233
132	Tauroursodeoxycholic acid protects hepatocytes from ethanol-fed rats against tumor necrosis factor–induced cell death by replenishing mitochondrial glutathione. Hepatology, 2001, 34, 964-971.	7.3	75
133	How Is the Liver Primed or Sensitized for Alcoholic Liver Disease?. Alcoholism: Clinical and Experimental Research, 2001, 25, 171S-181S.	2.4	36
134	CELL DEATH AT THE MILLENNIUM. Clinics in Liver Disease, 2000, 4, 1-23.	2.1	43
135	Colchicine protects mice from the lethal effect of an agonistic anti-Fas antibody. Journal of Clinical Investigation, 2000, 105, 329-339.	8.2	67
136	Hepatotoxicity of psychotropic drugs. Hepatology, 1999, 29, 1347-1351.	7.3	107
137	Protection from Oxidant Injury by Sodium-dependent GSH Uptake in Retinal Müller Cells. Experimental Eye Research, 1999, 68, 609-616.	2.6	12
138	HEPATIC MITOCHONDRIAL GLUTATHIONE DEPLETION AND CYTOKINE-MEDIATED ALCOHOLIC LIVER DISEASE. Alcoholism: Clinical and Experimental Research, 1998, 22, 763-765.	2.4	1
139	Changes in glutathione homeostasis during liver regeneration in the rat. Hepatology, 1998, 27, 147-153.	7.3	83
140	Role of the Liver in Interorgan Homeostasis of Glutathione and Cyst(e)ine. Seminars in Liver Disease, 1998, 18, 313-329.	3.6	169
141	Mitochondrial Glutathione: Importance and Transport. Seminars in Liver Disease, 1998, 18, 389-401.	3.6	203
142	Sinusoidal endothelial cells as a target for acetaminophen toxicity. Biochemical Pharmacology, 1997, 53, 1339-1345.	4.4	91
143	Low de novo Glutathione Synthesis from Circulating Sulfur Amino Acids in the Lens Epithelium. Experimental Eye Research, 1997, 64, 615-626.	2.6	10
144	Transport of Circulating Reduced Glutathione at the Basolateral Side of the Anterior Lens Epithelium: Physiologic Importance and Manipulations. Experimental Eye Research, 1996, 62, 29-38.	2.6	44

#	Article	IF	CITATIONS
145	Evidence for the Existence of a Sodium-dependent Glutathione (GSH) Transporter. Journal of Biological Chemistry, 1996, 271, 9754-9758.	3.4	67
146	Plasma Membrane and Mitochondrial Transport of Hepatic Reduced Glutathione. Seminars in Liver Disease, 1996, 16, 147-158.	3.6	42
147	FeedingS-adenosyl-l-methionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes. Hepatology, 1995, 21, 207-214.	7.3	193
148	Evidence That the Rat Hepatic Mitochondrial Carrier Is Distinct from the Sinusoidal and Canalicular Transporters for Reduced Glutathione. Journal of Biological Chemistry, 1995, 270, 15946-15949.	3.4	48
149	Distribution of 3α-hydroxysteroid dehydrogenase (bile acid binder) in rat small intestine: Comparison with glutathione S-transferase subunits. Journal of Gastroenterology, 1994, 29, 115-119.	5.1	5
150	Blood-to-lens Transport of Reduced Glutathione in an In Situ Perfused Guinea-pig Eye. Experimental Eye Research, 1994, 59, 487-496.	2.6	19
151	New developments in drug hepatotoxicity. Current Opinion in Gastroenterology, 1994, 10, 313-318.	2.3	0
152	Mitochondrial glutathione depletion in alcoholic liver disease. Alcohol, 1993, 10, 469-475.	1.7	142
153	The relationship between biliary secretion of bilirubin and glutathione in the rat. Gastroenterologia Japonica, 1992, 27, 369-373.	0.3	7
154	Contribution of No-reflow phenomenon to hepatic injury after ischemia-reperfusion: Evidence for a role for superoxide anion. Hepatology, 1992, 15, 507-514.	7.3	193
155	Hepatic mitochondrial glutathione depletion and progression of experimental alcoholic liver disease in rats. Hepatology, 1992, 16, 1423-1427.	7.3	220
156	Effect of Phorone and Allopurinol on Ischemia-Reperfusion Injury in Gastrointestinal Mucosa of the Rat. Pharmacology, 1992, 44, 334-343.	2.2	8
157	[30] The use of isolated perfused liver in studies of biological transport processes. Methods in Enzymology, 1990, 192, 485-495.	1.0	4
158	The use of monochlorobimane to determine hepatic GSH levels and synthesis. Analytical Biochemistry, 1990, 190, 212-219.	2.4	205
159	Calcium compartmentation and exchange rates in primary hepatocyte culture. Analytical Biochemistry, 1990, 187, 187-196.	2.4	3
160	Importance and Regulation of Hepatic Glutathione. Seminars in Liver Disease, 1990, 10, 251-266.	3.6	188
161	Drug Hepatotoxicity. Seminars in Liver Disease, 1990, 10, 234-234.	3.6	3
162	Role of Clutathione Status in Protection against Ethanol-Induced Gastric Lesions. Pharmacology, 1989, 38, 57-60.	2.2	17

#	Article	IF	CITATIONS
163	Tocopherol-Binding Proteins of Hepatic Cytosol. Annals of the New York Academy of Sciences, 1989, 570, 85-94.	3.8	21
164	A Serologic Follow-up of the 1942 Epidemic of Post-Vaccination Hepatitis in the United States Army. New England Journal of Medicine, 1987, 316, 965-970.	27.0	240
165	Effect of age on the sinusoidal release of hepatic glutathione from the perfused rat liver. Biochemical Pharmacology, 1987, 36, 4015-4017.	4.4	9
166	Trans-stimulation and driving forces for GSH transport in sinusoidal membrane vesicles from rat liver. Biochemical and Biophysical Research Communications, 1987, 143, 377-382.	2.1	23
167	Subunit Heterogeneity of Cationic Human Hepatic Glutathione S-Transferases. Pharmacology, 1987, 35, 65-78.	2.2	11
168	Binding of bile acids, oleic acid, and organic anions by rat and human hepatic Z protein. Archives of Biochemistry and Biophysics, 1986, 251, 385-392.	3.0	75
169	Purification of a 32.5 kDa monomeric sulfotransferase from rat liver with activity for bile acids and phenolic steroids. FEBS Letters, 1986, 207, 193-197.	2.8	13
170	Organic anion-binding by human hepatic GSH S-transferases. Biochemical Pharmacology, 1986, 35, 354-356.	4.4	16
171	Drug-Induced Hepatotoxicity. Annals of Internal Medicine, 1986, 104, 826.	3.9	181
172	Cytosolic bile acid binding protein in rat liver: Radioimmunoassay, molecular forms, developmental characteristics and organ distribution. Hepatology, 1986, 6, 433-439.	7.3	26
173	Diseaseâ€Specific Amino Acid Infusion (F080) in Hepatic Encephalopathy: A Prospective, Randomized, Doubleâ€Blind, Controlled Trial. Journal of Parenteral and Enteral Nutrition, 1985, 9, 288-295.	2.6	172
174	Acetaldehyde-dependent oxidation of glutathione catalyzed by rat liver cytosol. Biochemical and Biophysical Research Communications, 1985, 129, 949-957.	2.1	8
175	Gamma-glutamylcysteine: A substrate for glutathione 5-transferases. Biochemical Pharmacology, 1985, 34, 3643-3647.	4.4	20
176	Identification and purification of a 36 kDa bile acid binder in human hepatic cytosol. FEBS Letters, 1984, 177, 31-35.	2.8	35
177	Comparison of the binding affinities of five forms of rat glutathione S-transferases for bilirubin, sulfobromophthalein and hematin. Biochemical Pharmacology, 1984, 33, 3511-3513.	4.4	25
178	Liver histopathology in chronic common bile duct stenosis due to chronic alcoholic pancreatitis. Hepatology, 1981, 1, 65-72.	7.3	97
179	The hepatocellular uptake and biliary excretion of endotoxin in the rat. Hepatology, 1981, 1, 401-407.	7.3	43
180	Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology, 1981, 1, 431-435.	7.3	3,336

#	Article	IF	CITATIONS
181	Halothane-Induced Hepatic Disease. Seminars in Liver Disease, 1981, 1, 134-142.	3.6	34
182	Direct Protection Against Acetaminophen Hepatotoxicity by Propylthiouracil. Journal of Clinical Investigation, 1981, 67, 688-695.	8.2	42
183	Binding of ethacrynic acid to hepatic glutathione S-transferases in vivo in the rat. Biochemical Pharmacology, 1980, 29, 1205-1208.	4.4	41
184	MALABSORPTION SECONDARY TO MESENTERIC ISCHEMIA. American Journal of Roentgenology, 1973, 119, 352-358.	2.2	8
185	Coproporphyrin I and III excretion in bile and urine. Journal of Clinical Investigation, 1972, 51, 2895-2899.	8.2	55
186	Isolation of Erythrocytes with Normal Protoporphyrin Levels in Erythropoietic Protoporphyria. New England Journal of Medicine, 1968, 278, 1077-1081.	27.0	16