Hays S Rye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6902880/publications.pdf

Version: 2024-02-01

279798 377865 4,454 37 23 34 h-index citations g-index papers 38 38 38 2995 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Research, 1992, 20, 2803-2812.	14.5	671
2	STRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING. Annual Review of Biochemistry, 1998, 67, 581-608.	11.1	547
3	Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction. Cell, 1996, 84, 481-490.	28.9	395
4	Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature, 1997, 388, 792-798.	27.8	392
5	Stable dye–DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature, 1992, 359, 859-861.	27.8	368
6	GroEL-GroES Cycling. Cell, 1999, 97, 325-338.	28.9	308
7	Fluorometric Assay Using Dimeric Dyes for Double- and Single-Stranded DNA and RNA with Picogram Sensitivity. Analytical Biochemistry, 1993, 208, 144-150.	2.4	248
8	GroEL stimulates protein folding through forced unfolding. Nature Structural and Molecular Biology, 2008, 15, 303-311.	8.2	149
9	GroEL-Mediated Protein Folding: Making the Impossible, Possible. Critical Reviews in Biochemistry and Molecular Biology, 2006, 41, 211-239.	5.2	144
10	High-Sensitivity Capillary Electrophoresis of Double-Stranded DNA Fragments Using Monomeric and Dimeric Fluorescent Intercalating Dyes. Analytical Chemistry, 1994, 66, 1941-1948.	6.5	143
11	Role of the Â-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. EMBO Journal, 2003, 22, 4877-4887.	7.8	130
12	Interaction of dimeric intercalating dyes with single-stranded DNA. Nucleic Acids Research, 1995, 23, 1215-1222.	14.5	122
13	High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange. Nucleic Acids Research, 1991, 19, 327-333.	14.5	121
14	Visualizing GroEL/ES in the Act of Encapsulating a Folding Protein. Cell, 2013, 153, 1354-1365.	28.9	102
15	Expansion and Compression of a Protein Folding Intermediate by GroEL. Molecular Cell, 2004, 16, 23-34.	9.7	85
16	[30] Picogram detection of stable dye-DNA intercalation complexes with two-color laser-excited confocal fluorescence gel scanner. Methods in Enzymology, 1993, 217, 414-431.	1.0	59
17	GroEL actively stimulates folding of the endogenous substrate protein PepQ. Nature Communications, 2017, 8, 15934.	12.8	52
18	Efficient cell delivery mediated by lipidâ€specific endosomal escape of supercharged branched peptides. Traffic, 2018, 19, 421-435.	2.7	51

#	Article	IF	CITATIONS
19	The C-terminal Tails of the Bacterial Chaperonin GroEL Stimulate Protein Folding by Directly Altering the Conformation of a Substrate Protein. Journal of Biological Chemistry, 2014, 289, 23219-23232.	3.4	46
20	Application of Fluorescence Resonance Energy Transfer to the GroEL-GroES Chaperonin Reaction. Methods, 2001, 24, 278-288.	3.8	43
21	Triggering Protein Folding within the GroEL-GroES Complex. Journal of Biological Chemistry, 2008, 283, 32003-32013.	3.4	34
22	Repetitive Protein Unfolding by the trans Ring of the GroEL-GroES Chaperonin Complex Stimulates Folding. Journal of Biological Chemistry, 2013, 288, 30944-30955.	3.4	26
23	[11] Construction of single-ring and two-ring hybrid versions of bacterial chaperonin GroEL. Methods in Enzymology, 1998, 290, 141-146.	1.0	25
24	Clathrin Coat Disassembly by the Yeast Hsc70/Ssa1p and Auxilin/Swa2p Proteins Observed by Single-particle Burst Analysis Spectroscopy. Journal of Biological Chemistry, 2013, 288, 26721-26730.	3.4	24
25	Environment-sensitive Labels in Multiplex Fluorescence Analyses of Protein-DNA Complexes. Journal of Biological Chemistry, 1996, 271, 32168-32173.	3.4	23
26	Burst analysis spectroscopy: A versatile single-particle approach for studying distributions of protein aggregates and fluorescent assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14400-14405.	7.1	23
27	Probing the Conformation of the Fibronectin III1–2 Domain by Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 2009, 284, 3445-3452.	3.4	23
28	Mechanism of Cell Penetration by Permeabilization of Late Endosomes: Interplay between a Multivalent TAT Peptide and Bis(monoacylglycero)phosphate. Cell Chemical Biology, 2020, 27, 1296-1307.e5.	5.2	23
29	Laserâ€excited confocalâ€fluorescence gel scanner. Review of Scientific Instruments, 1994, 65, 807-812.	1.3	19
30	Temperature Regulates Stability, Ligand Binding (Mg ²⁺ and ATP), and Stoichiometry of GroEL–GroES Complexes. Journal of the American Chemical Society, 2022, 144, 2667-2678.	13.7	18
31	Structural Basis of Substrate Selectivity of E. coli Prolidase. PLoS ONE, 2014, 9, e111531.	2.5	16
32	Protein chain collapse modulation and folding stimulation by GroEL-ES. Science Advances, 2022, 8, eabl6293.	10.3	14
33	Single Particle Fluorescence Burst Analysis of Epsin Induced Membrane Fission. PLoS ONE, 2015, 10, e0119563.	2.5	6
34	Development and application of multicolor burst analysis spectroscopy. Biophysical Journal, 2021, 120, 2192-2204.	0.5	2
35	Expansion and Compression of a Protein Folding Intermediate by GroEL. Molecular Cell, 2004, 16, 317.	9.7	1
36	The Impact of Hidden Structure on Aggregate Disassembly by Molecular Chaperones. Frontiers in Molecular Biosciences, $0, 9, .$	3.5	1

#	Article	IF	CITATIONS
37	Mechanism of Cell Penetration by Permeabilization of Late Endosomes: Interplay between a Multivalent TAT-Like Cell-Penetrating Peptide and the Lipid Bis(Monoacylglycerol)Phosphate. SSRN Electronic Journal, 0, , .	0.4	0