
Ali Sarafraz-Yazdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6901962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of novel magnetic solid-phase extraction sorbent based on Fe3O4/carbon nanosphere/polypyrrole composite and their application to the enrichment of polycyclic aromatic hydrocarbons from water samples prior to GC–FID analysis. Journal of the Iranian Chemical Society, 2018, 15, 153-161.	1.2	18
2	An insight into the determination of trace levels of benzodiazepines in biometric systems: Use of crab shell powder as an environmentally friendly biosorbent. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1092, 58-64.	1.2	9
3	New application of chitosanâ€grafted polyaniline in dispersive solidâ€phase extraction for the separation and determination of phthalate esters in milk using highâ€performance liquid chromatography. Journal of Separation Science, 2017, 40, 1739-1746.	1.3	29
4	Modeling of solid-phase tea waste extraction for the removal of manganese and cobalt from water samples by using PSO-artificial neural network and response surface methodology. Arabian Journal of Chemistry, 2017, 10, S1663-S1673.	2.3	43
5	Combination of artificial neural network and genetic algorithm method for modeling of methylene blue adsorption onto wood sawdust from water samples. Toxicology and Industrial Health, 2016, 32, 437-446.	0.6	5
6	Magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in water samples by Fe ₃ O ₄ @polypyrrole/carbon nanotubes. Journal of Separation Science, 2016, 39, 2746-2753.	1.3	29
7	Fluorine-tin oxide (FTO) electrode modified with platinum nanoparticles dispersed into montmorillonite clay as an effective and low cost catalyst for ethanol electrooxidation. RSC Advances, 2016, 6, 113240-113248.	1.7	4
8	Polyethylene glycol grafted flowerâ€like cupric nano oxide for the hollowâ€fiber solidâ€phase microextraction of hexaconazole, penconazole, and diniconazole in vegetable samples. Journal of Separation Science, 2016, 39, 3137-3144.	1.3	12
9	Determination of Aromatic Amines Using Solid-Phase Microextraction Based on an Ionic Liquid-Mediated Sol–Gel Technique. Journal of Chromatographic Science, 2016, 54, 677-681.	0.7	18
10	Development of a poly(ethylene glycol)–graphene oxide sol–gel coating for solid-phase microextraction of aromatic amines in water samples with a gas chromatography-flame ionization detector method. New Journal of Chemistry, 2015, 39, 1287-1294.	1.4	15
11	Carbon nanofibers decorated with magnetic nanoparticles as a new sorbent for the magnetic solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples. New Journal of Chemistry, 2015, 39, 5621-5627.	1.4	47
12	Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC - Trends in Analytical Chemistry, 2015, 73, 81-90.	5.8	153
13	Determination of melamine in soil samples using surfactant-enhanced hollow fiber liquid phase microextraction followed by HPLC–UV using experimental design. Journal of Advanced Research, 2015, 6, 957-966.	4.4	29
14	Headspace solid phase microextraction of volatile aromatic hydrocarbons using a steel wire coated with an electrochemically prepared nanocomposite consisting of polypyrrole, carbon nanotubes, and titanium oxide. Mikrochimica Acta, 2015, 182, 217-225.	2.5	31
15	Ionic-liquid-mediated poly(dimethylsiloxane)- grafted carbon nanotube fiber prepared by the sol-gel technique for the head space solid-phase microextraction of methyl <i>tert</i> -butyl ether using GC. Journal of Separation Science, 2014, 37, 127-134.	1.3	16
16	Preparation of an ionic liquid-mediated carbon nanotube-poly(dimethylsiloxane) fiber by sol–gel technique for determination of polycyclic aromatic hydrocarbons in urine samples using head-space solid-phase microextraction coupled with gas chromatography. Journal of the Iranian Chemical Society, 2014, 11, 969-977.	1.2	17
17	Determination of Mercury in Real Water Samples Using in situ Derivatization Followed by Sol-Gel-Solid-Phase Microextraction with Gas Chromatography-Flame Ionization Detection. Journal of Chromatographic Science, 2014, 52, 81-87.	0.7	13
18	New polypyrrole–carbon nanotubes–silicon dioxide solidâ€phase microextraction fiber for the preconcentration and determination of benzene, toluene, ethylbenzene, and <i>o</i> â€xylene using gas liquid chromatography. Journal of Separation Science, 2014, 37, 2605-2612.	1.3	17

#	Article	IF	CITATIONS
19	A non-ionic surfactant-mediated sol–gel coating for solid-phase microextraction of benzene, toluene, ethylbenzene and o-xylene in water samples using a gas chromatography-flame ionization detector. New Journal of Chemistry, 2014, 38, 4486.	1.4	11
20	SIMULTANEOUS DETERMINATION OF VITAMIN A AND E IN INFANT MILK FORMULAS USING SEMI-MICRO LIQUID–LIQUID EXTRACTION FOLLOWED BY HPLC-UV. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 391-403.	0.5	8
21	Simultaneous derivatization and extraction of iodine from milk samples by hollow fiber liquid-phase microextraction followed by gas chromatography-electron capture detection. Journal of the Iranian Chemical Society, 2013, 10, 643-651.	1.2	8
22	Determination of Hg(II) in Environmental Water Samples Using DLLME Method Prior to GC-FID. Chromatographia, 2013, 76, 861-865.	0.7	5
23	A solid phase microextraction coating based on ionic liquid sol–gel technique for determination of benzene, toluene, ethylbenzene and o-xylene in water samples using gas chromatography flame ionization detector. Journal of Chromatography A, 2013, 1300, 104-111.	1.8	59
24	Determination of monocyclic aromatic amines using headspace solid-phase microextraction based on sol-gel technique prior to GC. Journal of Separation Science, 2013, 36, 1629-1635.	1.3	36
25	Carbon nanotube assisted sol-gel based hollow fiber solidphase microextraction combined with pre-heating injectionhigh performance liquid chromatography as a novel sample preparation method for determination of nitroaromatics. Sample Preparation, 2013, 1, 1-9.	0.4	5
26	PRE-CONCENTRATION AND DETERMINATION OF Î ² -BLOCKERS USING CARBON NANOTUBE-ASSISTED PSEUDO-STIRBAR HOLLOW FIBER SOLID-/LIQUID-PHASE MICROEXTRACTION AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH FLUORESCENCE DETECTION. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 750-769.	0.5	13
27	Headspace solid-phase microextraction using poly(ethylene glycol) grafted multi-walled carbon nanotube fibers for the determination of methyl tert-butyl ether in water samples. Analytical Methods, 2012, 4, 3701.	1.3	18
28	Determination of non-steroidal anti-inflammatory drugs in water samples by solid-phase microextraction based sol–gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes coated fiber. Analytica Chimica Acta, 2012, 720, 134-141.	2.6	105
29	Preâ€concentration of nonâ€steroidal antiâ€inflammatory drugs in water using dispersive liquid–liquid and singleâ€drop microextraction with highâ€performance liquid chromatography. Journal of Separation Science, 2012, 35, 2476-2483.	1.3	35
30	Determination of phenolic compounds in water and urine samples using solid-phase microextraction based on sol–gel technique prior to GC-FID. Analytical Methods, 2012, 4, 4316.	1.3	25
31	Determination of Triazole Fungicides Using Hollow Fiber Liquid Phase Microextraction Prior to Gas Chromatography–Mass Spectrometry Analysis. Industrial & Engineering Chemistry Research, 2012, 51, 3101-3107.	1.8	34
32	Determination of non-steroidal anti-inflammatory drugs in urine by hollow-fiber liquid membrane-protected solid-phase microextraction based on sol–gel fiber coating. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 908, 67-75.	1.2	55
33	Design, synthesis and evaluation of a molecularly imprinted polymer for hollow fiber–solid phase microextraction of chlorogenic acid in medicinal plants. Journal of Chromatography A, 2012, 1229, 24-29.	1.8	69
34	Determination of furan in food samples using two solid phase microextraction fibers based on sol–gel technique with gas chromatography–flame ionisation detector. Food Chemistry, 2012, 131, 698-704.	4.2	43
35	Comparative study of the sol–gel based solid phase microextraction fibers in extraction of naphthalene, fluorene, anthracene and phenanthrene from saffron samples extractants. Mikrochimica Acta, 2012, 176, 317-325.	2.5	37
36	Separation and Determination of Amitriptyline and Nortriptyline in Biological Samples Using Single-Drop Microextraction with GC. Chromatographia, 2011, 73, 549-557.	0.7	14

ALI SARAFRAZ-YAZDI

#	Article	IF	CITATIONS
37	A novel solid-phase microextraction using coated fiber based sol–gel technique using poly(ethylene) Tj ETQq1 and o-xylene in water samples with gas chromatography-flam ionization detector. Journal of Chromatography A. 2011, 1218, 5757-5764.	1 0.7843 1.8	14 rgBT /Ove 86
38	Surfactant-based extraction methods. TrAC - Trends in Analytical Chemistry, 2011, 30, 918-929.	5.8	138
39	Determination of volatile organic compounds in environmental water samples using three solid-phase microextraction fibers based on sol–gel technique with gas chromatography–flame ionization detector. Analytical Methods, 2011, 3, 1877.	1.3	30
40	Determination of Hg(II) in Natural Waters by Diphenylation by Single-Drop Microextraction: GC. Chromatographia, 2010, 71, 1049-1054.	0.7	21
41	lonic Liquid-Based Submerged Single Drop Microextraction: a New Method for the Determination of Aromatic Amines in Environmental Water Samples. Chromatographia, 2010, 72, 867-873.	0.7	24
42	Application of Sol–Gel Based Poly(ethylene glycol)/Multiwalled Carbon Nanotubes Coated Fiber for SPME of Methyl tert-Butyl Ether in Environmental Water Samples. Chromatographia, 2010, 72, 923-931.	0.7	33
43	Liquid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2010, 29, 1-14.	5.8	654
44	Determination of chlorophenols in environmental water samples using directly suspended droplet liquid-liquid-liquid phase microextraction prior to high-performance liquid chromatography. International Journal of Environmental Analytical Chemistry, 2010, 90, 1108-1118.	1.8	6
45	Comparative study of the three sol–gel based solid phase microextraction fibers in extraction of BTEX from water samples using gas chromatography-flame ionization detection. Analytical Methods, 2010, 2, 746.	1.3	40
46	Comparative study of direct immersion and headspace single drop microextraction techniques for BTEX determination in water samples using GC-FID. International Journal of Environmental Analytical Chemistry, 2010, 90, 1036-1047.	1.8	18
47	Determination of 3-nitroaniline in water samples by directly suspended droplet three-phase liquid-phase microextraction using 18-crown-6 ether and high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 5086-5091.	1.8	53
48	A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography. Talanta, 2009, 79, 472-478.	2.9	38
49	Separation and determination of benzene, toluene, ethylbenzene and o-xylene compounds in water using directly suspended droplet microextraction coupled with gas chromatography-flame ionization detector. Talanta, 2009, 78, 936-941.	2.9	84
50	Directly Suspended Droplet Three Liquid Phase Microextraction of Diclofenac Prior to LC. Chromatographia, 2008, 67, 49-53.	0.7	25
51	Separation and determination of amitriptyline and nortriptyline by dispersive liquid–liquid microextraction combined with gas chromatography flame ionization detection. Talanta, 2008, 75, 1293-1299.	2.9	138
52	BTEX determination in water matrices using HF-LPME with gas chromatography–flame ionization detector. Chemosphere, 2008, 71, 671-676.	4.2	80
53	Directly Suspended Droplet Microextraction and Analysis of Amitriptyline and Nortriptyline by GC. Chromatographia, 2007, 66, 613-617.	0.7	37
54	A combination of ultrasound and a bio-catalyst: removal of 2-chlorophenol from aqueous solution. Ultrasonics Sonochemistry, 2006, 13, 37-41.	3.8	43

ALI SARAFRAZ-YAZDI

#	Article	IF	CITATIONS
55	Comparison of Hollow Fiber and Single-Drop Liquid-Phase Microextraction Techniques for HPLC Determination of Aniline Derivatives in Water. Chromatographia, 2006, 63, 563-569.	0.7	45
56	A combination of ultrasound and inorganic catalyst: removal of 2-chlorophenol from aqueous solution. Ultrasonics Sonochemistry, 2005, 12, 137-141.	3.8	85
57	Two-step hollow fiber-based, liquid-phase microextraction combined with high-performance liquid chromatography: A new approach to determination of aromatic amines in water. Journal of Chromatography A, 2005, 1082, 136-142.	1.8	95
58	Surfactant enhanced liquid-phase microextraction of basic drugs of abuse in hair combined with high performance liquid chromatography. Journal of Chromatography A, 2005, 1094, 1-8.	1.8	98
59	LC Determination of Mono-Substituted Phenols in Water Using Liquid–Liquid–Liquid Phase Microextraction. Chromatographia, 2005, 62, 49-54.	0.7	20
60	Liquid–liquid–liquid phase microextraction of aromatic amines in water using crown ethers by high-performance liquid chromatography with monolithic column. Talanta, 2005, 66, 664-669.	2.9	67
61	Determination of Trace of Methyl tert-Butyl Ether in Water Using Liquid Drop Headspace Sampling and GC. Chromatographia, 2004, 60, 699-702.	0.7	23
62	Effect of cathodic electrolyte on the performance of electrochemical hydride generation from graphite cathode. Talanta, 2004, 64, 644-649.	2.9	14
63	Membrane extraction with sorbent interface-gas chromatography as an effective and fast means for continuous monitoring of thermal degradation products of polyacrylonitrile. Analyst, The, 2002, 127, 912-916.	1.7	9
64	Gas chromatography of copper (II), nickel (II), palladium (II) and vanadium (IV) using atomic emission detector and Î ² -ketoamine Schiff bases derived from stilbenediamines. Chromatographia, 2002, 56, 729-732.	0.7	13
65	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 43, 231-237.	1.6	18
66	Platinum-selective capillary gas chromatographic determination with microwave-induced plasma atomic emission detection. Journal of Chromatography A, 1998, 824, 223-229.	1.8	11
67	Capillary gas chromatographic determination of copper and nickel using microwave-induced plasma atomic emission detection. Journal of Chromatography A, 1993, 636, 271-276.	1.8	19
68	Gas chromatography of chloride and bromide as phenylboronic acid/mercuric nitrate derivatives with microwave induced plasma atomic emission detection. Journal of Chromatography A, 1992, 594, 395-399.	1.8	11