Salvatore Caniglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6901170/publications.pdf Version: 2024-02-01

SALVATORE CANICLIA

#	Article	IF	CITATIONS
1	Cerebellar degeneration-related protein 1 expression in fibroblasts of patients affected by down syndrome. International Journal of Transgender Health, 2020, 13, 548-555.	2.3	0
2	Extracellular Vesicles as Nanotherapeutics for Parkinson's Disease. Biomolecules, 2020, 10, 1327.	4.0	19
3	Humanin gene expression in fibroblast of Down syndrome subjects. International Journal of Medical Sciences, 2020, 17, 320-324.	2.5	12
4	Glia-Derived Extracellular Vesicles in Parkinson's Disease. Journal of Clinical Medicine, 2020, 9, 1941.	2.4	18
5	Boosting Antioxidant Self-defenses by Grafting Astrocytes Rejuvenates the Aged Microenvironment and Mitigates Nigrostriatal Toxicity in Parkinsonian Brain via an Nrf2-Driven Wnt/β-Catenin Prosurvival Axis. Frontiers in Aging Neuroscience, 2020, 12, 24.	3.4	23
6	Parkinson's disease, aging and adult neurogenesis: Wnt/β atenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell, 2020, 19, e13101.	6.7	105
7	Neural Stem Cell Grafts Promote Astroglia-Driven Neurorestoration in the Aged Parkinsonian Brain via Wnt/β-Catenin Signaling. Stem Cells, 2018, 36, 1179-1197.	3.2	49
8	Microglia Polarization, Gene-Environment Interactions and Wnt/β-Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain. Frontiers in Aging Neuroscience, 2018, 10, 12.	3.4	71
9	microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. International Journal of Molecular Sciences, 2017, 18, 2698.	4.1	170
10	Killer-specific secretory (Ksp37) gene expression in subjects with Down's syndrome. Neurological Sciences, 2016, 37, 793-795.	1.9	5
11	GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte–neuron interactions. Cell Death and Disease, 2016, 7, e2206-e2206.	6.3	67
12	LDOC1 expression in fibroblasts of patients with Down syndrome. Open Life Sciences, 2015, 10, .	1.4	0
13	NF-kB1 gene expression in Down syndrome patients. Neurological Sciences, 2015, 36, 1065-1066.	1.9	4
14	Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson's disease. Journal of Molecular Cell Biology, 2014, 6, 13-26.	3.3	73
15	Cerebellar degeneration-related autoantigen 1 (CDR1) gene expression in Alzheimer's disease. Neurological Sciences, 2014, 35, 1613-1614.	1.9	7
16	Wnt/β-Catenin Signaling Is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson's Disease. Stem Cells, 2014, 32, 2147-2163.	3.2	99
17	Aging-Induced <i>Nrf2-ARE</i> Pathway Disruption in the Subventricular Zone Drives Neurogenic Impairment in Parkinsonian Mice via <i>PI3K-Wnt/</i> β <i>Catenin</i> Dysregulation. Journal of Neuroscience, 2013, 33, 1462-1485.	3.6	90
18	Uncovering novel actors in astrocyte–neuron crosstalk in <scp>P</scp> arkinson's disease: the <scp>W</scp> nt/l²â€catenin signaling cascade as the common final pathway for neuroprotection and selfâ€repair. European Journal of Neuroscience, 2013, 37, 1550-1563.	2.6	81

#	Article	IF	CITATIONS
19	Reactive Astrocytes Are Key Players in Nigrostriatal Dopaminergic Neurorepair in the Mptp Mouse Model of Parkinson's Disease: Focus on Endogenous Neurorestoration. Current Aging Science, 2013, 6, 45-55.	1.2	54
20	Plasticity of Subventricular Zone Neuroprogenitors in MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine) Mouse Model of Parkinson's Disease Involves Cross Talk between Inflammatory and Wnt/A-Catenin Signaling Pathways: Functional Consequences for Neuroprotection and Repair. Journal of Neuroscience, 2012, 32, 2062-2085.	3.6	123
21	Reactive astrocytes and Wnt/β-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neurobiology of Disease, 2011, 41, 508-527.	4.4	177
22	A Wnt1 regulated Frizzled-1/β-Cateninsignaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Molecular Neurodegeneration, 2011, 6, 49.	10.8	179
23	Switching the Microglial Harmful Phenotype Promotes Lifelong Restoration of Subtantia Nigra Dopaminergic Neurons from Inflammatory Neurodegeneration in Aged Mice. Rejuvenation Research, 2011, 14, 411-424.	1.8	45
24	Vulnerability to Parkinson's Disease: Towards an Unifying Theory of Disease Etiology. , 2011, , 690-704.		6
25	Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Journal of Neuroinflammation, 2010, 7, 83.	7.2	53
26	Glia as a Turning Point in the Therapeutic Strategy of Parkinsons Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 349-372.	1.4	59
27	P3.048 MPTP-reactive "in situ―inflammation as a key event in the molecular cascade linking nigrostriatal injury to repair. Parkinsonism and Related Disorders, 2009, 15, S160.	2.2	0
28	Loss of aromatase cytochrome P450 function as a risk factor for Parkinson's disease?. Brain Research Reviews, 2008, 57, 431-443.	9.0	53
29	Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: Glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience, 2006, 138, 869-878.	2.3	177
30	Hormones Are Key Actors in Gene X Environment Interactions Programming the Vulnerability to Parkinson's Disease: Glia as a Common Final Pathway. Annals of the New York Academy of Sciences, 2005, 1057, 296-318.	3.8	47
31	Glucocorticoid receptor–nitric oxide crosstalk and vulnerability to experimental parkinsonism: pivotal role for glia–neuron interactions. Brain Research Reviews, 2005, 48, 302-321.	9.0	56
32	Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2470-2475.	7.1	148
33	The reproductive system at the neuroendocrine-immune interface: focus on LHRH, estrogens and growth factors in LHRH neuron–glial interactions. Domestic Animal Endocrinology, 2003, 25, 21-46.	1.6	11
34	Exposure to a Dysfunctional Glucocorticoid Receptor from Early Embryonic Life Programs the Resistance to Experimental Autoimmune Encephalomyelitis Via Nitric Oxide-Induced Immunosuppression. Journal of Immunology, 2002, 168, 5848-5859.	0.8	37
35	Stress, the immune system and vulnerability to degenerative disorders of the central nervous system in transgenic mice expressing glucocorticoid receptor antisense RNA. Brain Research Reviews, 2001, 37, 259-272.	9.0	52
36	Neuroendocrine–immune (NEI) circuitry from neuron–glial interactions to function: Focus on gender and HPA–HPG interactions on early programming of the NEI system. Immunology and Cell Biology, 2001, 79, 400-417.	2.3	37

#	Article	IF	CITATIONS
37	Gender, Neuroendocrineâ€Immune Interactions and Neuronâ€Glial Plasticity: Role of Luteinizing Hormoneâ€Releasing Hormone (LHRH). Annals of the New York Academy of Sciences, 2000, 917, 678-709.	3.8	30