
Andrew Storfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6900228/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Darwin, the devil, and the management of transmissible cancers. Conservation Biology, 2021, 35, 748-751.	4.7	13
2	Quantifying 25 years of disease aused declines in Tasmanian devil populations: host density drives spatial pathogen spread. Ecology Letters, 2021, 24, 958-969.	6.4	61
3	Contemporary and historical selection in Tasmanian devils (<i>Sarcophilus harrisii</i>) support novel, polygenic response to transmissible cancer. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210577.	2.6	9
4	Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics, 2021, 22, 698.	2.8	6
5	Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (<i>Sarcophilus harrisii</i>) and their transmissible tumour. Molecular Ecology, 2020, 29, 3217-3233.	3.9	9
6	Mixed support for gene flow as a constraint to local adaptation and contributor to the limited geographic range of an endemic salamander. Molecular Ecology, 2020, 29, 4091-4101.	3.9	7
7	Infectious disease and sickness behaviour: tumour progression affects interaction patterns and social network structure in wild Tasmanian devils. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202454.	2.6	16
8	A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science, 2020, 370, .	12.6	24
9	Applications of Population Genomics for Understanding and Mitigating Wildlife Disease. Population Genomics, 2020, , 357-383.	0.5	40
10	Spontaneous Tumor Regression in Tasmanian Devils Associated with <i>RASL11A</i> Activation. Genetics, 2020, 215, 1143-1152.	2.9	22
11	Population Genomics of Wildlife Cancer. Population Genomics, 2020, , 385-416.	0.5	2
12	Emerging Frontiers in the Study of Molecular Evolution. Journal of Molecular Evolution, 2020, 88, 211-226.	1.8	8
13	Hybridizing salamanders experience accelerated diversification. Scientific Reports, 2020, 10, 6566.	3.3	16
14	Disease swamps molecular signatures of geneticâ€environmental associations to abiotic factors in Tasmanian devil (<i>Sarcophilus harrisii</i>) populations. Evolution; International Journal of Organic Evolution, 2020, 74, 1392-1408.	2.3	18
15	Contemporary Demographic Reconstruction Methods Are Robust to Genome Assembly Quality: A Case Study in Tasmanian Devils. Molecular Biology and Evolution, 2019, 36, 2906-2921.	8.9	84
16	Individual and temporal variation in pathogen load predicts longâ€ŧerm impacts of an emerging infectious disease. Ecology, 2019, 100, e02613.	3.2	33
17	Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evolutionary Applications, 2019, 12, 1772-1780.	3.1	37
18	Rate of intersexual interactions affects injury likelihood in Tasmanian devil contact networks. Behavioral Ecology, 2019, 30, 1087-1095.	2.2	25

#	Article	IF	CITATIONS
19	Comparative landscape genetics of two endemic torrent salamander species, Rhyacotriton kezeri and R. variegatus: implications for forest management and species conservation. Conservation Genetics, 2019, 20, 801-815.	1.5	16
20	Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. Conservation Genetics, 2019, 20, 81-87.	1.5	41
21	Transcriptomics of Tasmanian Devil (Sarcophilus Harrisii) Ear Tissue Reveals Homogeneous Gene Expression Patterns across a Heterogeneous Landscape. Genes, 2019, 10, 801.	2.4	6
22	Sex bias in ability to cope with cancer: Tasmanian devils and facial tumour disease. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182239.	2.6	31
23	The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii). Genome Biology and Evolution, 2018, 10, 3012-3025.	2.5	30
24	Largeâ€effect loci affect survival in Tasmanian devils (<i>Sarcophilus harrisii</i>) infected with a transmissible cancer. Molecular Ecology, 2018, 27, 4189-4199.	3.9	45
25	Navigating the Interface Between Landscape Genetics and Landscape Genomics. Frontiers in Genetics, 2018, 9, 68.	2.3	82
26	Regional variation in drivers of connectivity for two frog species (<i>Rana pretiosa</i> and) Tj ETQq0 0 0 rgBT /O	verlock 10	Tf 50 462 T
27	The devil is in the details: Genomics of transmissible cancers in Tasmanian devils. PLoS Pathogens, 2018, 14, e1007098.	4.7	18
28	Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii). Conservation Genetics, 2017, 18, 977-982.	1.5	50
29	Infection of the fittest: devil facial tumour disease has greatest effect on individuals with highest reproductive output. Ecology Letters, 2017, 20, 770-778.	6.4	50
30	Landscape genetics of the Tasmanian devil: implications for spread of an infectious cancer. Conservation Genetics, 2017, 18, 1287-1297.	1.5	15
31	Responsible <scp>RAD</scp> : Striving for best practices in population genomic studies of adaptation. Molecular Ecology Resources, 2017, 17, 366-369.	4.8	58
32	Breaking RAD: an evaluation of the utility of restriction siteâ€associated DNA sequencing for genome scans of adaptation. Molecular Ecology Resources, 2017, 17, 142-152.	4.8	322
33	An approach for identifying cryptic barriers to gene flow that limit species' geographic ranges. Molecular Ecology, 2017, 26, 490-504.	3.9	15
34	Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions. American Naturalist, 2016, 188, 379-397.	2.1	663

35	Mixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (<i>Rhinella marina</i>) in Australia. Molecular Ecology, 2016, 25, 4161-4176.	3.9	38
36	Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nature Communications, 2016, 7, 12684.	12.8	162

3

#	Article	IF	CITATIONS
37	Host species composition influences infection severity among amphibians in the absence of spillover transmission. Ecology and Evolution, 2015, 5, 1432-1439.	1.9	24
38	A test of the central–marginal hypothesis using population genetics and ecological niche modelling in an endemic salamander (<i>Ambystoma barbouri</i>). Molecular Ecology, 2015, 24, 967-979.	3.9	38
39	Landscape genetics and genetic structure of the southern torrent salamander, Rhyacotriton variegatus. Conservation Genetics, 2015, 16, 209-221.	1.5	24
40	A stable niche assumption-free test of ecological divergence. Molecular Phylogenetics and Evolution, 2014, 76, 211-226.	2.7	7
41	Inbreeding and strong population subdivision in an endangered salamander. Conservation Genetics, 2014, 15, 137-151.	1.5	20
42	Comparative landscape genetics of two river frog species occurring at different elevations on <scp>M</scp> ount <scp>K</scp> ilimanjaro. Molecular Ecology, 2014, 23, 4989-5002.	3.9	20
43	Characterization of 10 microsatellite markers for the southern torrent salamander (Rhyacotriton) Tj ETQq1 1 0.78	4314 rgBT 0.8	[/Overlock
44	Rangewide landscape genetics of an endemic <scp>P</scp> acific northwestern salamander. Molecular Ecology, 2013, 22, 1250-1266.	3.9	66
45	A decade of amphibian population genetic studies: synthesis and recommendations. Conservation Genetics, 2012, 13, 1685-1689.	1.5	35
46	Current and Historical Drivers of Landscape Genetic Structure Differ in Core and Peripheral Salamander Populations. PLoS ONE, 2012, 7, e36769.	2.5	40
47	<i>Amphibian Ecology and Conservation: A Handbook of Techniques</i> . Techniques in Ecology and Conservation Series. Edited by C. KennethÂDoddJr. Oxford and New York: Oxford University Press. \$120.00 (hardcover); \$59.95 (paper). xxvii + 556 p.; ill.; index. ISBN: 978-0-19-954118-8 (hc); 978-0-19-954119-5 (pb). 2010 Quarterly Review of Biology, 2011, 86, 217-217.	0.1	0
48	Can Differences in Host Behavior Drive Patterns of Disease Prevalence in Tadpoles?. PLoS ONE, 2011, 6, e24991.	2.5	23
49	Ecopathology of Ranaviruses Infecting Amphibians. Viruses, 2011, 3, 2351-2373.	3.3	181
50	Correlations of Life-History and Distributional-Range Variation with Salamander Diversification Rates: Evidence for Species Selection. Systematic Biology, 2011, 60, 503-518.	5.6	11
51	Landscape genetics: where are we now?. Molecular Ecology, 2010, 19, 3496-3514.	3.9	480
52	Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molecular Ecology, 2010, 19, 3760-3772.	3.9	237
53	An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?. Ecology Letters, 2010, 13, 60-67.	6.4	135
54	New Microsatellite Markers for Examining Genetic Variation in Peripheral and Core Populations of the Coastal Giant Salamander (Dicamptodon tenebrosus). PLoS ONE, 2010, 5, e14333.	2.5	8

#	Article	IF	CITATIONS
55	Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology, 2010, 91, 252-261.	3.2	360
56	Anthropogenic and natural disturbance lead to differing patterns of gene flow in the Rocky Mountain tailed frog, Ascaphus montanus. Biological Conservation, 2010, 143, 778-786.	4.1	68
57	Influence of lifeâ€history variation on the genetic structure of two sympatric salamander taxa. Molecular Ecology, 2009, 18, 1629-1639.	3.9	53
58	Modern Molecular Methods for Amphibian Conservation. BioScience, 2009, 59, 559-571.	4.9	21
59	Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies. Ecography, 2008, 31, 685-697.	4.5	89
60	Landscape genetic structure of coastal tailed frogs (<i>Ascaphus truei</i>) in protected vs. managed forests. Molecular Ecology, 2008, 17, 4642-4656.	3.9	93
61	Newly developed polymorphic microsatellite markers for frogs of the genus <i>Ascaphus</i> . Molecular Ecology Resources, 2008, 8, 936-938.	4.8	5
62	Phylogeographic incongruence of codistributed amphibian species based on small differences in geographic distribution. Molecular Phylogenetics and Evolution, 2007, 43, 468-479.	2.7	23
63	Phylogenetic concordance analysis shows an emerging pathogen is novel and endemic. Ecology Letters, 2007, 10, 1075-1083.	6.4	57
64	The influence of altitude and topography on genetic structure in the long-toed salamander(Ambystoma macrodactulym). Molecular Ecology, 2007, 16, 1625-1637.	3.9	133
65	Coalescent-based hypothesis testing supports multiple Pleistocene refugia in the Pacific Northwest for the Pacific giant salamander (Dicamptodon tenebrosus). Molecular Ecology, 2006, 15, 2477-2487.	3.9	66
66	EFFECTS OF ATRAZINE AND IRIDOVIRUS INFECTION ON SURVIVAL AND LIFE-HISTORY TRAITS OF THE LONG-TOED SALAMANDER (AMBYSTOMA MACRODACTYLUM). Environmental Toxicology and Chemistry, 2006, 25, 168.	4.3	82
67	Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conservation Genetics, 2006, 7, 605-611.	1.5	55
68	Antipredator behavior of chytridiomycosis-infected northern leopard frog (Rana pipiens) tadpoles. Canadian Journal of Zoology, 2006, 84, 58-65.	1.0	42
69	Testing hypotheses of speciation timing in Dicamptodon copei and Dicamptodon aterrimus (Caudata:) Tj ETQq1	1 0.78431 2.7	4 rgBT /Ove
70	Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Molecular Ecology, 2005, 14, 2553-2564.	3.9	254
71	Life-History Responses to Pathogens in Tiger Salamander (Ambystoma tigrinum) Larvae. Journal of Herpetology, 2005, 39, 366-372.	0.5	10
72	Phenotypically Plastic Responses of Larval Tiger Salamanders, Ambystoma tigrinum, to Different Predators. Journal of Herpetology, 2004, 38, 612-615.	0.5	12

#	Article	IF	CITATIONS
73	Evidence for Introgression in the Endangered Sonora Tiger Salamander, Ambystoma tigrinum stebbinsi (Lowe). Copeia, 2004, 2004, 783-796.	1.3	21
74	Global amphibian declines: sorting the hypotheses. Diversity and Distributions, 2003, 9, 89-98.	4.1	752
75	Amphibian declines: future directions. Diversity and Distributions, 2003, 9, 151-163.	4.1	100
76	Parasite local adaptation: Red Queen versus Suicide King. Trends in Ecology and Evolution, 2003, 18, 523-530.	8.7	165
77	Gene flow and local adaptation in a sunfish-salamander system. Behavioral Ecology and Sociobiology, 1999, 46, 273-279.	1.4	29
78	Gene flow and endangered species translocations: a topic revisited. Biological Conservation, 1999, 87, 173-180.	4.1	273
79	Quantitative genetics: a promising approach for the assessment of genetic variation in endangered species. Trends in Ecology and Evolution, 1996, 11, 343-348.	8.7	120
80	The Society for Conservation Biology: Progress or Stasis?. Conservation Biology, 1995, 9, 982-983.	4.7	0