Andrew Storfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6900228/publications.pdf

Version: 2024-02-01

80 papers 6,385 citations

35 h-index 71685 **76** g-index

82 all docs

82 docs citations

82 times ranked 7373 citing authors

#	Article	IF	CITATIONS
1	Global amphibian declines: sorting the hypotheses. Diversity and Distributions, 2003, 9, 89-98.	4.1	752
2	Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions. American Naturalist, 2016, 188, 379-397.	2.1	663
3	Landscape genetics: where are we now?. Molecular Ecology, 2010, 19, 3496-3514.	3.9	480
4	Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology, 2010, 91, 252-261.	3.2	360
5	Breaking RAD: an evaluation of the utility of restriction siteâ€associated DNA sequencing for genome scans of adaptation. Molecular Ecology Resources, 2017, 17, 142-152.	4.8	322
6	Gene flow and endangered species translocations: a topic revisited. Biological Conservation, 1999, 87, 173-180.	4.1	273
7	Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Molecular Ecology, 2005, 14, 2553-2564.	3.9	254
8	Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molecular Ecology, 2010, 19, 3760-3772.	3.9	237
9	Ecopathology of Ranaviruses Infecting Amphibians. Viruses, 2011, 3, 2351-2373.	3.3	181
10	Parasite local adaptation: Red Queen versus Suicide King. Trends in Ecology and Evolution, 2003, 18, 523-530.	8.7	165
11	Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nature Communications, 2016, 7, 12684.	12.8	162
12	An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?. Ecology Letters, 2010, 13, 60-67.	6.4	135
13	The influence of altitude and topography on genetic structure in the long-toed salamander(Ambystoma macrodactulym). Molecular Ecology, 2007, 16, 1625-1637.	3.9	133
14	Quantitative genetics: a promising approach for the assessment of genetic variation in endangered species. Trends in Ecology and Evolution, 1996, 11, 343-348.	8.7	120
15	Amphibian declines: future directions. Diversity and Distributions, 2003, 9, 151-163.	4.1	100
16	Landscape genetic structure of coastal tailed frogs (<i>Ascaphus truei</i>) in protected vs. managed forests. Molecular Ecology, 2008, 17, 4642-4656.	3.9	93
17	Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies. Ecography, 2008, 31, 685-697.	4.5	89
18	Contemporary Demographic Reconstruction Methods Are Robust to Genome Assembly Quality: A Case Study in Tasmanian Devils. Molecular Biology and Evolution, 2019, 36, 2906-2921.	8.9	84

#	Article	IF	CITATIONS
19	EFFECTS OF ATRAZINE AND IRIDOVIRUS INFECTION ON SURVIVAL AND LIFE-HISTORY TRAITS OF THE LONG-TOED SALAMANDER (AMBYSTOMA MACRODACTYLUM). Environmental Toxicology and Chemistry, 2006, 25, 168.	4.3	82
20	Navigating the Interface Between Landscape Genetics and Landscape Genomics. Frontiers in Genetics, 2018, 9, 68.	2.3	82
21	Anthropogenic and natural disturbance lead to differing patterns of gene flow in the Rocky Mountain tailed frog, Ascaphus montanus. Biological Conservation, 2010, 143, 778-786.	4.1	68
22	Coalescent-based hypothesis testing supports multiple Pleistocene refugia in the Pacific Northwest for the Pacific giant salamander (Dicamptodon tenebrosus). Molecular Ecology, 2006, 15, 2477-2487.	3.9	66
23	Rangewide landscape genetics of an endemic <scp>P</scp> acific northwestern salamander. Molecular Ecology, 2013, 22, 1250-1266.	3.9	66
24	Quantifying 25 years of disease aused declines in Tasmanian devil populations: host density drives spatial pathogen spread. Ecology Letters, 2021, 24, 958-969.	6.4	61
25	Responsible <scp>RAD</scp> : Striving for best practices in population genomic studies of adaptation. Molecular Ecology Resources, 2017, 17, 366-369.	4.8	58
26	Phylogenetic concordance analysis shows an emerging pathogen is novel and endemic. Ecology Letters, 2007, 10, 1075-1083.	6.4	57
27	Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conservation Genetics, 2006, 7, 605-611.	1.5	55
28	Influence of lifeâ€history variation on the genetic structure of two sympatric salamander taxa. Molecular Ecology, 2009, 18, 1629-1639.	3.9	53
29	Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii). Conservation Genetics, 2017, 18, 977-982.	1.5	50
30	Infection of the fittest: devil facial tumour disease has greatest effect on individuals with highest reproductive output. Ecology Letters, 2017, 20, 770-778.	6.4	50
31	Testing hypotheses of speciation timing in Dicamptodon copei and Dicamptodon aterrimus (Caudata:) Tj ETQq1 I	l 0.78431 2.7	4 rgBT /Ove
32	Largeâ€effect loci affect survival in Tasmanian devils (<i>Sarcophilus harrisii</i>) infected with a transmissible cancer. Molecular Ecology, 2018, 27, 4189-4199.	3.9	45
33	Antipredator behavior of chytridiomycosis-infected northern leopard frog (Rana pipiens) tadpoles. Canadian Journal of Zoology, 2006, 84, 58-65.	1.0	42
34	Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. Conservation Genetics, 2019, 20, 81-87.	1.5	41
35	Applications of Population Genomics for Understanding and Mitigating Wildlife Disease. Population Genomics, 2020, , 357-383.	0.5	40
36	Current and Historical Drivers of Landscape Genetic Structure Differ in Core and Peripheral Salamander Populations. PLoS ONE, 2012, 7, e36769.	2.5	40

3

#	Article	IF	Citations
37	A test of the central–marginal hypothesis using population genetics and ecological niche modelling in an endemic salamander (⟨i⟩Ambystoma barbouri⟨ i⟩). Molecular Ecology, 2015, 24, 967-979.	3.9	38
38	Mixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (<i>Rhinella marina</i>) in Australia. Molecular Ecology, 2016, 25, 4161-4176.	3.9	38
39	Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evolutionary Applications, 2019, 12, 1772-1780.	3.1	37
40	A decade of amphibian population genetic studies: synthesis and recommendations. Conservation Genetics, 2012, 13, 1685-1689.	1.5	35
41	Individual and temporal variation in pathogen load predicts longâ€ŧerm impacts of an emerging infectious disease. Ecology, 2019, 100, e02613.	3.2	33
42	Sex bias in ability to cope with cancer: Tasmanian devils and facial tumour disease. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182239.	2.6	31
43	The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii). Genome Biology and Evolution, 2018, 10, 3012-3025.	2.5	30
44	Gene flow and local adaptation in a sunfish-salamander system. Behavioral Ecology and Sociobiology, 1999, 46, 273-279.	1.4	29
45	Rate of intersexual interactions affects injury likelihood in Tasmanian devil contact networks. Behavioral Ecology, 2019, 30, 1087-1095.	2.2	25
46	Host species composition influences infection severity among amphibians in the absence of spillover transmission. Ecology and Evolution, 2015, 5, 1432-1439.	1.9	24
47	Landscape genetics and genetic structure of the southern torrent salamander, Rhyacotriton variegatus. Conservation Genetics, 2015, 16, 209-221.	1.5	24
48	A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science, 2020, 370, .	12.6	24
49	Phylogeographic incongruence of codistributed amphibian species based on small differences in geographic distribution. Molecular Phylogenetics and Evolution, 2007, 43, 468-479.	2.7	23
50	Can Differences in Host Behavior Drive Patterns of Disease Prevalence in Tadpoles?. PLoS ONE, 2011, 6, e24991.	2.5	23
51	Regional variation in drivers of connectivity for two frog species (<i>Rana pretiosa</i> and) Tj ETQq1 1 0.784314	rgBJ /Ove	erlogk 10 Ti
52	Spontaneous Tumor Regression in Tasmanian Devils Associated with <i>RASL11A</i> Activation. Genetics, 2020, 215, 1143-1152.	2.9	22
53	Evidence for Introgression in the Endangered Sonora Tiger Salamander, Ambystoma tigrinum stebbinsi (Lowe). Copeia, 2004, 2004, 783-796.	1.3	21
54	Modern Molecular Methods for Amphibian Conservation. BioScience, 2009, 59, 559-571.	4.9	21

#	Article	IF	CITATIONS
55	Inbreeding and strong population subdivision in an endangered salamander. Conservation Genetics, 2014, 15, 137-151.	1.5	20
56	Comparative landscape genetics of two river frog species occurring at different elevations on <scp>M</scp> ount <scp>K</scp> ilimanjaro. Molecular Ecology, 2014, 23, 4989-5002.	3.9	20
57	The devil is in the details: Genomics of transmissible cancers in Tasmanian devils. PLoS Pathogens, 2018, 14, e1007098.	4.7	18
58	Disease swamps molecular signatures of geneticâ€environmental associations to abiotic factors in Tasmanian devil (<i>Sarcophilus harrisii</i>) populations. Evolution; International Journal of Organic Evolution, 2020, 74, 1392-1408.	2.3	18
59	Comparative landscape genetics of two endemic torrent salamander species, Rhyacotriton kezeri and R. variegatus: implications for forest management and species conservation. Conservation Genetics, 2019, 20, 801-815.	1.5	16
60	Infectious disease and sickness behaviour: tumour progression affects interaction patterns and social network structure in wild Tasmanian devils. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202454.	2.6	16
61	Hybridizing salamanders experience accelerated diversification. Scientific Reports, 2020, 10, 6566.	3.3	16
62	Landscape genetics of the Tasmanian devil: implications for spread of an infectious cancer. Conservation Genetics, 2017, 18, 1287-1297.	1.5	15
63	An approach for identifying cryptic barriers to gene flow that limit species' geographic ranges. Molecular Ecology, 2017, 26, 490-504.	3.9	15
64	Darwin, the devil, and the management of transmissible cancers. Conservation Biology, 2021, 35, 748-751.	4.7	13
65	Phenotypically Plastic Responses of Larval Tiger Salamanders, Ambystoma tigrinum, to Different Predators. Journal of Herpetology, 2004, 38, 612-615.	0.5	12
66	Correlations of Life-History and Distributional-Range Variation with Salamander Diversification Rates: Evidence for Species Selection. Systematic Biology, 2011, 60, 503-518.	5.6	11
67	Life-History Responses to Pathogens in Tiger Salamander (Ambystoma tigrinum) Larvae. Journal of Herpetology, 2005, 39, 366-372.	0.5	10
68	Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (<i>Sarcophilus harrisii</i>) and their transmissible tumour. Molecular Ecology, 2020, 29, 3217-3233.	3.9	9
69	Contemporary and historical selection in Tasmanian devils (<i>Sarcophilus harrisii</i>) support novel, polygenic response to transmissible cancer. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210577.	2.6	9
70	New Microsatellite Markers for Examining Genetic Variation in Peripheral and Core Populations of the Coastal Giant Salamander (Dicamptodon tenebrosus). PLoS ONE, 2010, 5, e14333.	2.5	8
71	Emerging Frontiers in the Study of Molecular Evolution. Journal of Molecular Evolution, 2020, 88, 211-226.	1.8	8
72	A stable niche assumption-free test of ecological divergence. Molecular Phylogenetics and Evolution, 2014, 76, 211-226.	2.7	7

#	Article	lF	CITATIONS
73	Mixed support for gene flow as a constraint to local adaptation and contributor to the limited geographic range of an endemic salamander. Molecular Ecology, 2020, 29, 4091-4101.	3.9	7
74	Transcriptomics of Tasmanian Devil (Sarcophilus Harrisii) Ear Tissue Reveals Homogeneous Gene Expression Patterns across a Heterogeneous Landscape. Genes, 2019, 10, 801.	2.4	6
75	Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics, 2021, 22, 698.	2.8	6
76	Newly developed polymorphic microsatellite markers for frogs of the genus <i>Ascaphus</i> Molecular Ecology Resources, 2008, 8, 936-938.	4.8	5
77	Characterization of 10 microsatellite markers for the southern torrent salamander (Rhyacotriton) Tj ETQq $1\ 1\ 0.78$	4314 rgBT	 <u> </u> Overlock
78	Population Genomics of Wildlife Cancer. Population Genomics, 2020, , 385-416.	0.5	2
79	The Society for Conservation Biology: Progress or Stasis?. Conservation Biology, 1995, 9, 982-983.	4.7	0
80	<i>Amphibian Ecology and Conservation: A Handbook of Techniques</i> . Techniques in Ecology and Conservation Series. Edited by C. KennethÂDoddJr. Oxford and New York: Oxford University Press. \$120.00 (hardcover); \$59.95 (paper). xxvii + 556 p.; ill.; index. ISBN: 978-0-19-954118-8 (hc); 978-0-19-954119-5 (pb). 2010 Quarterly Review of Biology, 2011, 86, 217-217.	0.1	O