
Yu M Azhniuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6899832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth and spectroscopic characterization of CdSe nanoparticles synthesized from CdCl2 and Na2SeSO3 in aqueous gelatine solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 304-309.	4.7	59
2	Vibrational spectroscopy of compound semiconductor nanocrystals. Journal Physics D: Applied Physics, 2018, 51, 503001.	2.8	57
3	Resonant Raman studies of compositional and size dispersion of CdS1â^'xSexnanocrystals in a glass matrix. Journal of Physics Condensed Matter, 2004, 16, 9069-9082.	1.8	54
4	Confinement-, surface- and disorder-related effects in the resonant Raman spectra of nanometric CdS1â^'xSex crystals. Physica Status Solidi (B): Basic Research, 2003, 239, 490-499.	1.5	52
5	X-ray diffraction and Raman scattering in SbSI nanocrystals. Materials Research Bulletin, 2003, 38, 1767-1772.	5.2	28
6	Thermal treatment-dependent chemical composition of ternary CdS1â^'xSex nanocrystals grown in borosilicate glass. Journal of Crystal Growth, 2010, 312, 1709-1716.	1.5	28
7	Spectroscopic studies of thermal treatment effect on the composition and size of CdS1â^'xSex nanocrystals in borosilicate glass. Journal of Physics and Chemistry of Solids, 2008, 69, 139-146.	4.0	25
8	A spectroscopic and photochemical study of Ag+-, Cu2+-, Hg2+-, and Bi3+-doped Cd Zn1â^'S nanoparticles. Journal of Colloid and Interface Science, 2010, 345, 515-523.	9.4	23
9	Observation of torsional mode in CdS1â^'xSex nanoparticles in a borosilicate glass. Journal of Applied Physics, 2009, 106, 024307.	2.5	22
10	High-energy electron irradiation effects onCdS1â^'xSexquantum dots in borosilicate glass. Physical Review B, 2002, 65, .	3.2	21
11	Growth and characterisation of sulphur-rich TlIn(S1â^'Se)2 single crystals. Journal of Crystal Growth, 2013, 367, 35-41.	1.5	20
12	Incorporation of zinc into CdS1?xSex nanocrystals in glass matrix studied by optical spectroscopies. Physica Status Solidi A, 2004, 201, 1578-1587.	1.7	19
13	Precipitates of selenium and tellurium in II–VI nanocrystalâ€doped glass probed by Raman scattering. Physica Status Solidi (B): Basic Research, 2011, 248, 674-679.	1.5	19
14	SbSI nanocrystal formation in As–Sb–S–I glass under laser beam. Materials Research Bulletin, 2012, 47, 1520-1522.	5.2	19
15	Interplay of factors affecting Raman scattering in cadmium chalcogenide nanocrystals in dielectric media. Journal of Physics: Conference Series, 2007, 79, 012017.	0.4	18
16	Photoinduced Changes in the Structure of As ₂ S ₃ -Based SbSI Nanocrystal-Containing Composites Studied by Raman Spectroscopy. Ferroelectrics, 2011, 416, 113-118.	0.6	18
17	Resonant Raman scattering studies of Cd _{1-x} Zn _x S nanocrystals. Journal of Physics: Conference Series, 2007, 92, 012044.	0.4	17
18	Phonon spectroscopy of CdSe _{1–<i>x</i>} Te <i>_x</i> nanocrystals grown in a borosilicate glass. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2064-2067.	0.8	17

Үи М Агниик

#	Article	IF	CITATIONS
19	Optical characterization of Cd _{1â^'<i>x</i>} <scp>Z</scp> n _{<i>x</i>} <scp>S</scp> e nanocrystals grown in borosilicate glass. Physica Status Solidi (B): Basic Research, 2014, 251, 669-674.	1.5	17
20	All-optical patterning in azobenzene polymers and amorphous chalcogenides. Journal of Non-Crystalline Solids, 2019, 512, 112-131.	3.1	17
21	Structure, electrical conductivity, and Raman spectra of (Cu1–Ag)7GeS5I and (Cu1–Ag)7GeSe5I mixed crystals. Materials Research Bulletin, 2021, 135, 111116.	5.2	16
22	Phonon spectra of quaternary Cd _{1–<i>y</i>} Zn <i>_y</i> S _{1–<i>x</i>} Se <i>_x</i> semiconductor nanocrystals grown in a glass matrix. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2068-2071.	0.8	15
23	Composition-Dependent Optical Band Bowing, Vibrational, and Photochemical Behavior of Aqueous Glutathione-Capped (Cu, Ag)–In–S Quantum Dots. Journal of Physical Chemistry C, 2020, 124, 19375-19388.	3.1	15
24	Effect of X-ray irradiation on CdS1â^'xSex quantum dots optical absorption. Solid State Communications, 2001, 119, 447-451.	1.9	13
25	Raman and x-ray diffraction studies of nanometric Sn2P2S6crystals. Journal of Physics Condensed Matter, 2003, 15, 6381-6393.	1.8	13
26	Formation of CdSe nanocrystals in Cd-doped thin arsenic selenide films under laser irradiation. Thin Solid Films, 2018, 651, 163-169.	1.8	13
27	In-doped As2Se3 thin films studied by Raman and X-ray photoelectron spectroscopies. Applied Surface Science, 2019, 471, 943-949.	6.1	13
28	X-ray irradiation-induced ionization of CdS1â^'xSex nanocrystals embedded in borosilicate glass. Journal of Applied Physics, 2010, 107, 113528.	2.5	12
29	Chemical composition of matrix-embedded ternary II–VI nanocrystals derived from first- and second-order Raman spectra. Journal of Physics and Chemistry of Solids, 2016, 99, 66-74.	4.0	12
30	Laserâ€Induced Formation of CdS Crystallites in Cdâ€Doped Amorphous Arsenic Sulfide Thin Films. Physica Status Solidi (B): Basic Research, 2019, 256, 1800298.	1.5	12
31	Highâ€Throughput Robotic Synthesis and Photoluminescence Characterization of Aqueous Multinary Copper–Silver Indium Chalcogenide Quantum Dots. Particle and Particle Systems Characterization, 2021, 38, 2100169.	2.3	12
32	Optical studies of CdSe/HgSe and CdSe/Ag2Se core/shell nanoparticles embedded in gelatin. Journal of Physics Condensed Matter, 2008, 20, 455203.	1.8	11
33	Resonance effects in Raman scattering of quantum dots formed by the Langmuir-Blodgett method. Journal of Physics: Conference Series, 2010, 245, 012045.	0.4	11
34	Structural and optical study of Zn-doped As2Se3 thin films: Evidence for photoinduced formation of ZnSe nanocrystallites. AIP Advances, 2019, 9, .	1.3	11
35	Raman Spectra of Quaternary CdS _{<i>1â^²xâ²'y</i>} Se _{<i>x</i>} Te _{<i>y</i>} Nanocrystals Embedded in Borosilicate Glass. International Journal of Spectroscopy, 2012, 2012, 1-5.	1.6	10
36	Structural and optical properties of (Cu6PS5Br)1-(Cu7PS6) mixed crystals. Journal of Alloys and Compounds, 2019, 782, 586-591.	5.5	10

Үи М Агниик

#	Article	IF	CITATIONS
37	Evidence for formation of Se molecular clusters duringÂprecipitation of CdSe1â^'x S x nanoparticles inÂglass. Applied Physics A: Materials Science and Processing, 2009, 95, 473-477.	2.3	9
38	Effect of X-ray irradiation on the optical absorption of СdSe1â^'xTex nanocrystals embedded in borosilicate glass. Radiation Physics and Chemistry, 2012, 81, 766-770.	2.8	9
39	In situ Raman observation of laser-induced formation of TlInSe2 crystallites in Tl–In–As–Se glass. Journal of Physics and Chemistry of Solids, 2013, 74, 1452-1458.	4.0	9
40	Surface phonons in CdS1-xSexnanoparticles embedded in a dielectric medium. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2039-2042.	0.8	8
41	Raman evidence for surface oxidation of amorphous As2S3 thin films under ultraviolet irradiation. Applied Surface Science, 2019, 467-468, 119-123.	6.1	8
42	Synthesis from aqueous solutions and optical properties of Ag–In–S quantum dots. Applied Nanoscience (Switzerland), 2020, 10, 4909-4921.	3.1	8
43	Glassâ€embedded quaternary CdS _{1â°<i>x</i>â°<i>y</i>} Se <i>_x</i> Te <i>_y</i> nanocrystals: Chemical composition derived from the Raman band intensities. Journal of Raman Spectroscopy, 2017, 48, 485-493.	2.5	7
44	Raman and AFM studies of (As2S3)0.45(SbSI)0.55 thin films and bulk glass. Journal of Non-Crystalline Solids, 2014, 396-397, 36-40.	3.1	6
45	Flexoelectric and local heating effects on CdSe nanocrystals in amorphous As ₂ Se ₃ films. Materials Research Express, 2019, 6, 095913.	1.6	6
46	Raman study of laser-induced formation of Il–VI nanocrystals in zinc-doped As–S(Se) films. Applied Nanoscience (Switzerland), 2020, 10, 4831-4837.	3.1	6
47	Photoluminescence and optical absorption spectra of γ1-(GaxIn1-x)2Se3 mixed crystals. Physica Status Solidi (B): Basic Research, 2005, 242, 2113-2120.	1.5	5
48	Irradiation-induced ionization of glass-embedded CdS1â^'xSex nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 518-520.	2.7	4
49	Optical Absorption Processes in CdSe Nanocrystals Embedded in Silicate Glass and Organic Polymer Matrices Under 7-MeV Electron Irradiation. Journal of Nanoscience and Nanotechnology, 2008, 8, 806-811.	0.9	4
50	Photoluminescence of Xâ€ray irradiated Cd <scp>S</scp> e nanocrystals embedded in dielectric matrices. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1115-1120.	1.8	4
51	Ternary CdS _{1–<i>x</i>} Se _{<i>x</i>} nanocrystals formed in Cdâ€doped As–Se–S films due to photoenhanced diffusion during microâ€Raman measurement. Journal of Raman Spectroscopy, 2021, 52, 821-832.	2.5	4
52	Disorder Effects and Resonant Features in Raman Spectra of Electron-Irradiated GaP and CdS Crystals. Physica Status Solidi (B): Basic Research, 2001, 227, 595-603.	1.5	3
53	Structural and optical study of glutathione-capped Ag–In–S nanocrystals. Molecular Crystals and Liquid Crystals, 2021, 717, 98-108.	0.9	3
54	Mass transport in amorphous As2S3 films due to directional light scattering under illumination by an oblique tightly focused beam. Journal of Non-Crystalline Solids, 2022, 576, 121269.	3.1	3

Үи М Агниик

#	Article	IF	CITATIONS
55	Characterization of Ag–In–S films prepared by thermal evaporation. Materials Today: Proceedings, 2022, 62, 5745-5748.	1.8	3
56	Raman study of photoinduced changes in Cd-doped amorphous GeSe2 films. Materials Today: Proceedings, 2022, 62, 5759-5762.	1.8	3
57	Raman scattering in chalcogenide-based ferroelectrics: from bulk to nanoscale. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3166-3169.	0.8	2
58	Optical absorption of II–VI semiconductor-doped glasses exposed to 7MeV electron irradiation. Optical Materials, 2013, 35, 2275-2282.	3.6	2
59	Comment to "Continuousâ€wave laser irradiation to form Cd 1â^' x Zn x Se shell on CdSe QDs in silicate glasses―(J. Amer. Ceram. Soc. 102, 4555â€4561 (2019)). Journal of the American Ceramic Society, 2020, 103, 692-694.	3.8	2
60	CdS nanocrystals formed in amorphous GeS2:Cd films by photoenhanced diffusion. Applied Nanoscience (Switzerland), 2022, 12, 1091-1099.	3.1	2
61	Optical and electrical properties of Cu6PS5I-based thin films versus copper content variation. Ukrainian Journal of Physical Optics, 2017, 18, 232.	13.0	2
62	Disorderâ€Activted Firstâ€Order Raman Scattering by Acoustic Phonons in Electronâ€Irradiated GaP Crystals. Physica Status Solidi (B): Basic Research, 1989, 154, K197.	1.5	1
63	Confined Acoustic Phonon in CdS _{1â^'<i>x</i>} Se _{<i>x</i>} Nanoparticles in Borosilicate Glass. Journal of Nanoscience and Nanotechnology, 2009, 9, 5541-5544.	0.9	1
64	MicroRaman studies of implantationâ€induced amorphization of Si and subsequent regrowth under highâ€pressure and highâ€temperature treatment. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2432-2436.	1.8	1
65	Long-Term Stability of Optical Properties of Colloidal CdSe Nanocrystals in Polymer Matrices. International Journal of Nanoscience, 2019, 18, 1940052.	0.7	1
66	Comment to "Formation of CdS/Cd1–Zn S sandwich-structured quantum dots with high quantum efficiency in silicate glasses―(Journal of Luminescence 186 (2017) 30–33). Journal of Luminescence, 2020, 219, 116921.	3.1	1
67	Photo- and Thermally Stimulated Luminescence Spectra of CdS1 – xSex Nanocrystals Embedded in Borosilicate Glass. Journal of Nano- and Electronic Physics, 2016, 8, 03024-1-03024-8.	0.5	1
68	Raman scattering from polaritons and plasmaritons in 6H‣iC. Physica Status Solidi (B): Basic Research, 1986, 135, 75-84.	1.5	0
69	Optical absorption spectra of 10-MeV electron-irradiated paratellurite single crystals. Radiation Effects and Defects in Solids, 2001, 153, 205-210.	1.2	0
70	Effect of electron irradiation upon photoluminescence of CdS1â^'xSex mixed crystals. Radiation Physics and Chemistry, 2003, 68, 85-90.	2.8	0
71	Synthesis and Optical Properties of CdSe Nanocrystals Obtained from CdCl2 and Na2SeSO3 Aqueous Solutions in the Presence of Celatine. , 0, , .		0
72	Optical studies of the evolution of the core/shell interface in CdSe―and CdSâ€based core/shell nanostructures with a narrowâ€gap shell. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 402-406.	0.8	0

#	Article	IF	CITATIONS
73	Comment to "Multi-photon Raman scattering and yellow–green-light emission from feather-like Cd1–xZnxS nanostructures―by Song Yang and Jun Zhang (Applied Physics A (2019) 125:454). Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	0
74	Formation of molecular Se2 dimers in semiconductor-doped borosilicate glasses. Molecular Crystals and Liquid Crystals, 2020, 700, 54-62.	0.9	0
75	Annealing-induced formation of Sn2P2S6 crystallites in As2S3-based glass matrix. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2015, 18, 248-254.	1.0	Ο