Lanfen Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6899410/publications.pdf

Version: 2024-02-01

218677 345221 2,781 35 26 36 citations h-index g-index papers 36 36 36 4760 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A new ALK inhibitor overcomes resistance to first―and secondâ€generation inhibitors in NSCLC. EMBO Molecular Medicine, 2022, 14, e14296.	6.9	9
2	TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nature Communications, 2021, 12, 3519.	12.8	89
3	Glycogen accumulation and phase separation drives liver tumor initiation. Cell, 2021, 184, 5559-5576.e19.	28.9	126
4	A trustworthy CpG nanoplatform for highly safe and efficient cancer photothermal combined immunotherapy. Nanoscale, 2020, 12, 3916-3930.	5.6	52
5	Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nature Communications, 2020, 11, 5842.	12.8	33
6	Editorial: Hippo Signaling in the Immune System. Frontiers in Immunology, 2020, 11, 587514.	4.8	2
7	Pharmacological Targeting of Vacuolar H+-ATPase via Subunit V1G Combats Multidrug-Resistant Cancer. Cell Chemical Biology, 2020, 27, 1359-1370.e8.	5.2	13
8	Non-canonical Hippo signaling regulates immune responses. Advances in Immunology, 2019, 144, 87-119.	2.2	15
9	FGF15 Activates Hippo Signaling to Suppress Bile Acid Metabolism and Liver Tumorigenesis. Developmental Cell, 2019, 48, 460-474.e9.	7.0	68
10	Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nature Communications, 2019, 10, 755.	12.8	150
11	The Hippo Signaling Pathway in Regenerative Medicine. Methods in Molecular Biology, 2019, 1893, 353-370.	0.9	16
12	Role of Hippo signaling in regulating immunity. Cellular and Molecular Immunology, 2018, 15, 1003-1009.	10.5	78
13	The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nature Immunology, 2017, 18, 800-812.	14.5	165
14	Hippo Signaling Suppresses Cell Ploidy and Tumorigenesis through Skp2. Cancer Cell, 2017, 31, 669-684.e7.	16.8	123
15	Targeting BRK-Positive Breast Cancers with Small-Molecule Kinase Inhibitors. Cancer Research, 2017, 77, 175-186.	0.9	22
16	Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Science Translational Medicine, 2016, 8, 352ra108.	12.4	271
17	The Hippo signaling pathway in liver regeneration and tumorigenesis. Acta Biochimica Et Biophysica Sinica, 2015, 47, 46-52.	2.0	45
18	Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nature Communications, 2015, 6, 6239.	12.8	129

#	Article	IF	Citations
19	Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nature Immunology, 2015, 16 , $1142-1152$.	14.5	218
20	Mst1 and Mst2 kinases: regulations and diseases. Cell and Bioscience, 2013, 3, 31.	4.8	77
21	The Ets Transcription Factor GABP Is a Component of the Hippo Pathway Essential for Growth and Antioxidant Defense. Cell Reports, 2013, 3, 1663-1677.	6.4	109
22	<scp>CEACAM</scp> 1 on activated <scp>NK</scp> cells inhibits <scp>NKG</scp> 2 <scp>D</scp> â€mediated cytolytic function and signaling. European Journal of Immunology, 2013, 43, 2473-2483.	2.9	44
23	The Short Isoform of the CEACAM1 Receptor in Intestinal T Cells Regulates Mucosal Immunity and Homeostasis via Tfh Cell Induction. Immunity, 2012, 37, 930-946.	14.3	40
24	Hippo pathway in intestinal homeostasis and tumorigenesis. Protein and Cell, 2012, 3, 305-310.	11.0	30
25	CEACAM1 dampens antitumor immunity by down-regulating NKG2D ligand expression on tumor cells. Journal of Experimental Medicine, 2011, 208, 2633-2640.	8.5	64
26	Editorial: CEACAM1: fine-tuned for fine-tuning. Journal of Leukocyte Biology, 2009, 86, 195-197.	3.3	6
27	Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Inhibits Proximal TCR Signaling by Targeting ZAP-70. Journal of Immunology, 2008, 180, 6085-6093.	0.8	65
28	The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naÃ-ve T cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20321-20326.	7.1	135
29	CEACAM1 and the regulation of mucosal inflammation. Mucosal Immunology, 2008, 1, S39-S42.	6.0	23
30	Exacerbation of Experimental Autoimmune Encephalomyelitis in P2X7Râ^'/â^' Mice: Evidence for Loss of Apoptotic Activity in Lymphocytes. Journal of Immunology, 2006, 176, 3115-3126.	0.8	129
31	Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6362-6367.	7.1	121
32	Regulation of Immune Response by P2X7 Receptor. Critical Reviews in Immunology, 2006, 26, 499-513.	0.5	77
33	Transcriptional Profiling of $\hat{I}^3\hat{I}$ T Cells Identifies a Role for Vitamin D in the Immunoregulation of the VÎ ³ 9VÎ ² Response to Phosphate-Containing Ligands. Journal of Immunology, 2005, 174, 6144-6152.	0.8	63
34	Interleukin-1Â Induces a Reactive Astroglial Phenotype via Deactivation of the Rho GTPase-Rock Axis. Journal of Neuroscience, 2004, 24, 2837-2845.	3.6	152
35	Involvement of Classical and Novel Protein Kinase C Isoforms in the Response of Human VÎ ³ 9Vδ2 T Cells to Phosphate Antigens. Journal of Immunology, 2002, 169, 5761-5770.	0.8	17