List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6897402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 2011, 401, 177-189.	2.3	306
2	Metal pollution assessment of sediment and water in the Shur River. Environmental Monitoring and Assessment, 2008, 147, 107-116.	1.3	244
3	Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology, 2009, 6, 467-476.	1.8	165
4	Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination, 2010, 260, 129-136.	4.0	158
5	Environmental management of coastal regions in the Caspian Sea. International Journal of Environmental Science and Technology, 2008, 5, 43-52.	1.8	109
6	Groundwater quality degradation of an aquifer in Iran central desert. Desalination, 2010, 260, 264-275.	4.0	105
7	Environmental impacts of desalination on the ecology of Lake Urmia. Journal of Great Lakes Research, 2010, 36, 419-424.	0.8	103
8	Bioaccumulation of trace elements in water, sediment, and six fish species from a freshwater wetland, Iran. Microchemical Journal, 2012, 104, 1-6.	2.3	84
9	Iran's Agriculture in the Anthropocene. Earth's Future, 2020, 8, e2020EF001547.	2.4	82
10	Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environmental Monitoring and Assessment, 2010, 171, 395-410.	1.3	77
11	Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environmental Monitoring and Assessment, 2011, 182, 1-13.	1.3	73
12	The effects of socioeconomic parameters on household solid-waste generation and composition in developing countries (a case study: Ahvaz, Iran). Environmental Monitoring and Assessment, 2012, 184, 1841-1846.	1.3	73
13	Impact of major organophosphate pesticides used in agriculture to surface water and sediment quality (Southern Caspian Sea basin, Haraz River). Environmental Earth Sciences, 2011, 63, 873-883.	1.3	66
14	Optimizing Coagulation Process for Low to High Turbidity Waters Using Aluminum and Iron Salts. American Journal of Environmental Sciences, 2010, 6, 442-448.	0.3	65
15	Sustainability of energy production and use in Iran. Energy Policy, 2007, 35, 5171-5180.	4.2	63
16	A comparative study of elemental pollution and health risk assessment in urban dust of different land-uses in Tehran's urban area. Chemosphere, 2020, 241, 124984.	4.2	61
17	Flocculation of dissolved Pb, Cu, Zn and Mn during estuarine mixing of river water with the Caspian Sea. Environmental Pollution, 1996, 93, 257-260.	3.7	59
18	Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environmental Monitoring and Assessment, 2013, 185, 1737-1754.	1.3	59

#	Article	IF	CITATIONS
19	Comparative cancer risk assessment of THMs in drinking water from well water sources and surface water sources. Environmental Monitoring and Assessment, 2011, 179, 499-507.	1.3	58
20	Predicting the Longitudinal Dispersion Coefficient Using Support Vector Machine and Adaptive Neuro-Fuzzy Inference System Techniques. Environmental Engineering Science, 2009, 26, 1503-1510.	0.8	54
21	Flocculation of heavy metals during mixing of freshwater with Caspian Sea water. Environmental Geology, 2008, 53, 1811-1816.	1.2	51
22	Removal of mercury from contaminated saline wasters using dithiocarbamate functionalized-magnetic nanocomposite. Journal of Environmental Management, 2018, 213, 66-78.	3.8	51
23	Origin and chemical partitioning of heavy metals in riverbed sediments. International Journal of Environmental Science and Technology, 2006, 3, 35-42.	1.8	50
24	Influence of copper mine on surface water quality. International Journal of Environmental Science and Technology, 2007, 4, 85-91.	1.8	48
25	Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environmental Science and Pollution Research, 2014, 21, 2386-2395.	2.7	48
26	Contamination and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban dust from different land-uses in the most populated city of Iran. Ecotoxicology and Environmental Safety, 2020, 187, 109838.	2.9	45
27	Bioavailability and Concentration of Heavy Metals in the Sediments and Leaves of Grey Mangrove, Avicennia marina (Forsk.) Vierh, in Sirik Azini Creek, Iran. Biological Trace Element Research, 2011, 143, 1121-1130.	1.9	43
28	Assessing the trace metal pollution in the sediments of Mahshahr Bay, Persian Gulf, via a novel pollution index. Environmental Monitoring and Assessment, 2015, 187, 613.	1.3	43
29	Geochemistry of heavy metals and sedimentation rate in a bay adjacent to the Caspian Sea. International Journal of Environmental Science and Technology, 2004, 1, 191-198.	1.8	42
30	Influence of Sungun copper mine on groundwater quality, NW Iran. Environmental Geology, 2009, 58, 693-700.	1.2	41
31	A renewable energies-assisted sustainable development plan for Iran using techno-econo-socio-environmental multivariate analysis and big data. Energy Conversion and Management, 2017, 153, 257-277.	4.4	41
32	Assessment of metal pollution in the Anzali Wetland sediments using chemical partitioning method and pollution indices. Acta Oceanologica Sinica, 2016, 35, 28-36.	0.4	39
33	Bioaccumulation of Trace Elements in Trophic Levels of Wetland Plants and Waterfowl Birds. Biological Trace Element Research, 2011, 142, 500-516.	1.9	38
34	A cost-effective strategy for marine microalgae separation by electro-coagulation–flotation process aimed at bio-crude oil production: Optimization and evaluation study. Separation and Purification Technology, 2015, 147, 156-165.	3.9	38
35	Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2. Renewable Energy, 2018, 126, 189-201.	4.3	38
36	Chemometric Analysis of Surface Water Quality Data: Case Study of the Gorganrud River Basin, Iran. Environmental Modeling and Assessment, 2012, 17, 411-420.	1.2	37

#	Article	IF	CITATIONS
37	Partitioning of metals in sediments of the Haraz River (Southern Caspian Sea basin). Environmental Earth Sciences, 2010, 59, 1111-1117.	1.3	36
38	A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments. Environmental Monitoring and Assessment, 2014, 186, 2329-2348.	1.3	34
39	Increasing microalgal carbohydrate content for hydrothermal gasification purposes. Renewable Energy, 2018, 116, 710-719.	4.3	34
40	Role of riverine sediment and particulate matter in adsorption of heavy metals. International Journal of Environmental Science and Technology, 2004, 1, 135-140.	1.8	31
41	Role of metal species in flocculation rate during estuarine mixing. International Journal of Environmental Science and Technology, 2010, 7, 327-336.	1.8	31
42	Behavior of Cu, Zn, Pb, Ni and Mn during mixing of freshwater with the Caspian Sea water. Desalination, 2008, 229, 118-124.	4.0	30
43	Simulation process of biodiesel production plant. Environmental Progress and Sustainable Energy, 2019, 38, e13264.	1.3	30
44	Fuzzy analytic network process approach to evaluate land and sea criteria for land use planning in coastal areas. Ocean and Coastal Management, 2015, 116, 368-381.	2.0	28
45	Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran. Chinese Journal of Oceanology and Limnology, 2016, 34, 810-820.	0.7	28
46	Ecological risk assessment of metals contamination in the sediment of the Bamdezh wetland, Iran. International Journal of Environmental Science and Technology, 2015, 12, 951-958.	1.8	27
47	Evaluation of Urban Soil Pollution: A Combined Approach of Toxic Metals and Polycyclic Aromatic Hydrocarbons (PAHs). International Journal of Environmental Research, 2019, 13, 801-811.	1.1	27
48	Bioaccumulation of trace elements in different tissues of three commonly available fish species regarding their gender, gonadosomatic index, and condition factor in a wetland ecosystem. Environmental Monitoring and Assessment, 2012, 184, 1865-1878.	1.3	26
49	Attenuation of municipal landfill leachate through land treatment. Journal of Environmental Health Science & Engineering, 2014, 12, 12.	1.4	25
50	Effect of pH and salinity on flocculation process of heavy metals during mixing of Aras River water with Caspian Sea water. Environmental Earth Sciences, 2014, 72, 457-465.	1.3	25
51	A systematic approach of bottom-up assessment methodology for an optimal design of hybrid solar/wind energy resources – Case study at middle east region. Energy Conversion and Management, 2017, 145, 138-157.	4.4	25
52	Geochemistry of Ni, Zn, Cu, Pb, Co, Cd, V, Mn, Fe, Al and Ca in sediments of North Western part of the Persian Gulf. International Journal of Environmental Studies, 1998, 54, 205-212.	0.7	24
53	Evolution of a new surface water quality index for Karoon catchment in Iran. Water Science and Technology, 2011, 64, 2483-2491.	1.2	24
54	Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River. Environmental Monitoring and Assessment, 2013, 185, 197-203.	1.3	23

4

#	Article	IF	CITATIONS
55	Antioxidant response to metal pollution in Phragmites australis from Anzali wetland. Marine Pollution Bulletin, 2017, 119, 376-380.	2.3	23
56	Determination of naturally occurring radioactive materials (NORM) in formation water during oil exploration. Journal of Radioanalytical and Nuclear Chemistry, 2010, 283, 3-7.	0.7	21
57	Flocculation of metals during mixing of Siyahrud River water with Caspian Sea water. Environmental Monitoring and Assessment, 2012, 184, 6903-6911.	1.3	21
58	Effect of dissolved organic carbon and salinity on flocculation process of heavy metals during mixing of the Navrud River water with Caspian Seawater. Desalination and Water Treatment, 2015, 55, 926-934.	1.0	21
59	Dissolved and particulate trace metal geochemistry during mixing of Karganrud River with Caspian Sea water. Arabian Journal of Geosciences, 2015, 8, 2143-2151.	0.6	21
60	Life Cycle and Economic Assessments of Key Emerging Energy Efficient Wastewater Treatment Processes for Climate Change Adaptation. International Journal of Environmental Research, 2018, 12, 815-827.	1.1	21
61	Flocculation of dissolved Mn, Zn, Ni and Cu During the mixing of tadjan river water with caspian sea water. International Journal of Environmental Studies, 2003, 60, 575-580.	0.7	20
62	Impact of oil excavation activities on soil metallic pollution, case study of an Iran southern oil field. Environmental Earth Sciences, 2013, 70, 1219-1224.	1.3	20
63	Temporal metal concentration in coastal sediment at the north region of Persian Gulf. Marine Pollution Bulletin, 2018, 135, 880-888.	2.3	20
64	Removal of Heavy Metal Contaminants from Wastewater by Using <i>Chlorella vulgaris</i> Beijerinck: A Review. Current Environmental Management, 2020, 6, 174-187.	0.7	20
65	Environmental risk assessment of harmful algal blooms case study: Persian Gulf and Oman Sea located at Hormozgan Province, Iran. Human and Ecological Risk Assessment (HERA), 2019, 25, 271-296.	1.7	19
66	Association of trace metals with various sedimentary phases in dam reservoirs. International Journal of Environmental Science and Technology, 2011, 8, 841-852.	1.8	17
67	Designing a developed model for assessing the disaster induced vulnerability value in educational centers. Safety Science, 2011, 49, 679-685.	2.6	17
68	The impact of increased oxygen conditions on heavy metal flocculation in the Sefidrud estuary. Marine Pollution Bulletin, 2017, 121, 168-175.	2.3	17
69	Development of a model to assess environmental performance, concerning HSE-MS principles. Environmental Monitoring and Assessment, 2010, 165, 517-528.	1.3	16
70	Impacts of land use and land cover change on the interactions among multiple soil-dependent ecosystem services (case study: Jiroft plain, Iran). Environmental Geochemistry and Health, 2021, 43, 3977-3996.	1.8	16
71	Release of heavy metals under pre-set redox potentials in Musa estuary sediments, northwestern of Persian Gulf. Marine Pollution Bulletin, 2021, 168, 112390.	2.3	16
72	Assessment of Heavy Metal Pollution in Tilehbon River Sediments, Iran. Journal of Applied Sciences, 2009, 9, 1190-1193.	0.1	16

5

#	Article	IF	CITATIONS
73	Potential for reducing air pollution from oil refineries. Environmental Monitoring and Assessment, 2008, 145, 159-166.	1.3	15
74	Bioremediation of TNT Contaminated Soil by Composting with Municipal Solid Wastes. Soil and Sediment Contamination, 2010, 19, 504-514.	1.1	15
75	Development of a New Pollution Index for Heavy Metals in Sediments. Biological Trace Element Research, 2011, 143, 1828-1842.	1.9	15
76	A survey on bioconcentration capacities of some marine parasitic and free-living organisms in the Gulf of Oman. Ecological Indicators, 2014, 37, 99-104.	2.6	15
77	Comparison of controlling mechanisms of flocculation processes in estuaries. International Journal of Environmental Science and Technology, 2010, 7, 731-736.	1.8	14
78	Catalytic chemical reduction of nitrate from simulated groundwater using hydrogen radical produced on the surface of palladium catalyst supported on the magnetic alumina nanoparticles. Journal of Environmental Chemical Engineering, 2018, 6, 5249-5258.	3.3	14
79	Speciation of metals and metalloids in Anzali Wetland, Iran. International Journal of Environmental Science and Technology, 2020, 17, 1411-1424.	1.8	14
80	POLLUTION WITH METALS (As, Sb, Hg, Zn) IN AGRICULTURAL SOIL LOCATED CLOSE TO ZARSHURAN GOLD MINE, IRAN. Environmental Engineering and Management Journal, 2014, 13, 115-120.	0.2	14
81	Reduction of environmental pollution through optimization of energy use in cement industries. International Journal of Environmental Science and Technology, 2010, 7, 127-134.	1.8	13
82	A pollution index for agricultural soils. Archives of Agronomy and Soil Science, 2016, 62, 1411-1424.	1.3	13
83	Management of post-earthquake construction debris in Tehran Metropolitan. International Journal of Environmental Science and Technology, 2016, 13, 639-648.	1.8	13
84	Sedimentation rate determination and heavy metal pollution assessment in Zariwar Lake, Iran. SN Applied Sciences, 2020, 2, 1.	1.5	13
85	Geospatial patterns and background levels of heavy metal in deposited particulate matter in Bushehr, Iran. Arabian Journal of Geosciences, 2015, 8, 2081-2093.	0.6	11
86	Potential of natural bed soil in adsorption of heavy metals in industrial waste landfill. International Journal of Environmental Science and Technology, 2010, 7, 545-552.	1.8	10
87	Implementation of green management concepts in sport complexes. International Journal of Environmental Science and Technology, 2006, 3, 213-219.	1.8	9
88	Magntic susceptibility as a proxy to heavy metal content in the sediments of Anzali wetland, Iran. Iranian Journal of Environmental Health Science & Engineering, 2012, 9, 34.	1.8	9
89	A Cost-Benefit Analysis of Bakhtiari Hydropower Dam Considering the Nexus between Energy and Water. Energies, 2022, 15, 871.	1.6	9
90	Landfill Site Selection Using Pollution Potential Zoning of Aquifers by Modified DRASTIC Method: Case Study in Northeast Iran. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2017, 41, 229-239.	1.0	8

5

#	Article	IF	CITATIONS
91	Developing an environmental water quality monitoring program for Haraz River in Northern Iran. Environmental Monitoring and Assessment, 2017, 189, 410.	1.3	8
92	Study of speciation and spatial variation of pollutants in Anzali Wetland (Iran) using linear regression, Kriging and multivariate analysis. Environmental Science and Pollution Research, 2020, 27, 16827-16840.	2.7	8
93	Minimization of air pollutants emissions by process improvement of catalytic reforming unit in an Iranian old refinery. Clean Technologies and Environmental Policy, 2011, 13, 743-749.	2.1	7
94	Historical changes in distribution and partitioning of natural and anthropogenic shares of heavy metals in sediment core from the southern Caspian Sea. Environmental Earth Sciences, 2012, 67, 799-811.	1.3	7
95	Evaluating soil metallic pollution and consequent human health hazards in the vicinity of an industrialized zone, case study of Mubarakeh steel complex, Iran. Journal of Environmental Health Science & Engineering, 2015, 13, 75.	1.4	7
96	Study on non-linear equilibrium, kinetics and thermodynamic of deltamethrin removal in aqueous solution using modified magnetic iron oxide nanoparticles. Water Science and Technology, 2017, 76, 847-858.	1.2	7
97	A STUDY OF POLLUTION IN SEDIMENTS FROM ANZALI WETLAND WITH GEO-ACCUMULATION INDEX AND ECOLOGICAL RISK ASSESSMENT. Environmental Engineering and Management Journal, 2018, 17, 2255-2262.	0.2	7
98	Estuarine capacity in removal of trace metals from contaminated river water, Southern Caspian Sea. Water and Environment Journal, 2008, 22, 193-198.	1.0	6
99	Nuclear Power and Its Role in CO ₂ Emissions from the Electricity Generation Sector in Iran. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2011, 34, 43-52.	1.2	6
100	Origination and assessment of metal pollution in Qarechay River bed sediments. Environmental Monitoring and Assessment, 2014, 186, 4289-4297.	1.3	6
101	Fate of toxic metals during estuarine mixing of fresh water with saline water. Environmental Science and Pollution Research, 2017, 24, 27430-27435.	2.7	6
102	Development of soil pollution risk index in the vicinity of a waste dam in Chadormalu iron ore mine. International Journal of Environmental Science and Technology, 2019, 16, 8485-8494.	1.8	6
103	Assessment and Investigation on the Fate of Organochlorine Pesticides in Water and Sediments of International Amir-kalaye Wetland in North of Iran. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 850-857.	1.3	5
104	Hexavalent chromium adsorption from aqueous solutions using nanoporous graphene/Fe3O4(NPG/Fe3O4: modeling and optimization). Desalination and Water Treatment, 2016, 57, 28284-28293.	1.0	5
105	The role of the estuarine zone on the river particulate toxicity. Environmental Science and Pollution Research, 2019, 26, 5038-5053.	2.7	5
106	Investigating the pattern of soil metallic pollution in urban areas (case study: a district in Tehran) Tj ETQq0 0 0 rg	gBT /Over 1.8	lock 10 Tf 50
107	Employing speciation of metals to assess photo-assisted electrochemical efficiency for improving rainwater quality in Tehran, Iran. International Journal of Environmental Science and Technology, 0, ,	1.8	5

¹⁰⁸The thermodynamic stability, potential toxicity, and speciation of metals and metalloids in Tehran
runoff, Iran. Environmental Geochemistry and Health, 2021, 43, 4719-4740.1.8

#	Article	IF	CITATIONS
109	A short review of heavy metal pollution status in Musa fjord sediments. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	5
110	Integrated model for land-use transformation analysis based on multi-layer perception neural network and agent-based model. Environmental Science and Pollution Research, 2022, 29, 59770-59783.	2.7	5
111	Role of salinity and aeration on flocculation and remobilization of metals during estuarine mixing. Environmental Earth Sciences, 2022, 81, 1.	1.3	5
112	Development and application of reducedâ€order neural network model based on proper orthogonal decomposition for BOD ₅ monitoring in river systems: Uncertainty analysis. Environmental Progress and Sustainable Energy, 2013, 32, 344-349.	1.3	4
113	Pyrolysis optimization of Mediterranean microalgae for bio-oil production purpose. International Journal of Environmental Science and Technology, 2020, 17, 4281-4290.	1.8	4
114	Integrated CA model and remote sensing approach for simulating the future development of a city. International Journal of Environmental Science and Technology, 2021, 18, 1465-1478.	1.8	4
115	Azolla as a Feedstock for Bio-Refinery: Cultivation, Conversion and Application. , 2016, , .		4
116	Metals removal during estuarine mixing of Arvand River water with the Persian Gulf water. Open Geosciences, 2010, 2, .	0.6	3
117	Stimulation of the hydrolytic stage for biogas production from cattle manure in an electrochemical bioreactor. Water Science and Technology, 2016, 74, 606-615.	1.2	3
118	Geological and geophysical study of salt diapirs for hazardous waste disposal. International Journal of Environmental Science and Technology, 2016, 13, 1951-1972.	1.8	3
119	Stability and speciation of heavy metals and metalloids in Tajan River water, North of Iran. International Journal of Environmental Science and Technology, 2020, 17, 1899-1906.	1.8	3
120	Assessment and Estimation of Environmental Costs of Kasilian Dam. Asian Journal of Water, Environment and Pollution, 2018, 15, 107-114.	0.4	2
121	Fibrous adsorbent derived from sulfonation of cotton waste: application for removal of cadmium sulfide nanoparticles from aquatic media. SN Applied Sciences, 2019, 1, 1.	1.5	2
122	Extraction of silver from computer printed circuit boards wastes by supercritical fluids: pretreatment study. International Journal of Environmental Science and Technology, 2022, 19, 4883-4890.	1.8	2
123	Determining the appropriate mixing ratio in a multi-substrate anaerobic digestion of organic solid wastes employing Taguchi method. Journal of Environmental Health Science & Engineering, 2022, 20, 545-554.	1.4	2
124	Determination of sedimentation rate of Hoor-Al-Azim wetland by carbon-14 method and analysis of its past climate using element geochemistry. Environmental Earth Sciences, 2019, 78, 1.	1.3	1
125	Exposure risk assessment, pollution level, and source identification of arsenic in soil: A case study of the Bardsir Plain (southeastern Iran). International Journal of Environmental Health Research, 2020, , 1-14.	1.3	1
126	Tracing of petroleum products in groundwater (upstream of Dez watershed to Dez dam) in order to develop a new method of risk assessment. International Journal of Environmental Science and Technology, 0, , .	1.8	0