
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6896609/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting the IL-6–Yap–Snail signalling axis in synovial fibroblasts ameliorates inflammatory arthritis. Annals of the Rheumatic Diseases, 2022, 81, 214-224.	0.9	26
2	Albumin Biomolecular Drug Designs Stabilized through Improved Thiol Conjugation and a Modular Locked Nucleic Acid Functionalized Assembly. Bioconjugate Chemistry, 2022, 33, 333-342.	3.6	6
3	Functionalized Acyclic (<scp>l</scp>)â€Threoninol Nucleic Acid Fourâ€Way Junction with High Stability In Vitro and In Vivo. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
4	Programmable half-life and anti-tumour effects of bispecific T-cell engager-albumin fusions with tuned FcRn affinity. Communications Biology, 2021, 4, 310.	4.4	29
5	Bioengineered solutions to improve cancer immunotherapies. Therapeutic Delivery, 2021, 12, 339-341.	2.2	1
6	FcRn expression in cancer: Mechanistic basis and therapeutic opportunities. Journal of Controlled Release, 2021, 337, 248-257.	9.9	15
7	Roadmap on nanomedicine. Nanotechnology, 2021, 32, 012001.	2.6	17
8	Albumin-based drug designs for pharmacokinetic modulation. Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 783-795.	3.3	42
9	FcRn overexpression in human cancer drives albumin recycling and cell growth; a mechanistic basis for exploitation in targeted albumin-drug designs. Journal of Controlled Release, 2020, 322, 53-63.	9.9	29
10	Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis. Scientific Reports, 2020, 10, 157.	3.3	44
11	Size-Selective Phagocytic Clearance of Fibrillar α-Synuclein through Conformational Activation of Complement Receptor 4. Journal of Immunology, 2020, 204, 1345-1361.	0.8	23
12	Albumin-Binding Fatty Acid–Modified Gapmer Antisense Oligonucleotides for Modulation of Pharmacokinetics. Methods in Molecular Biology, 2020, 2176, 163-174.	0.9	1
13	Optimised approach to albumin–drug conjugates using monobromomaleimide-C-2 linkers. Organic and Biomolecular Chemistry, 2019, 17, 7870-7873.	2.8	14
14	A new class of recombinant human albumin with multiple surface thiols exhibits stable conjugation and enhanced FcRn binding and blood circulation. Journal of Biological Chemistry, 2019, 294, 3735-3743.	3.4	15
15	Independent Validation of a Diagnostic Noninvasive 3-MicroRNA Ratio Model (uCaP) for Prostate Cancer in Cell-Free Urine. Clinical Chemistry, 2019, 65, 540-548.	3.2	20
16	Intracellular bacteria engage a STING–TBK1–MVB12b pathway to enable paracrine cGAS–STING signalling. Nature Microbiology, 2019, 4, 701-713.	13.3	100
17	Fibrin-hyaluronic acid hydrogel-based delivery of antisense oligonucleotides for ADAMTS5 inhibition in co-delivered and resident joint cells in osteoarthritis. Journal of Controlled Release, 2019, 294, 247-258.	9.9	34
18	Targeting Biological Barriers: Turning a Wall into a Therapeutic Springboard. Molecular Therapy, 2018, 26, 933-934.	8.2	7

#	Article	IF	CITATIONS
19	Cellular recycling-driven in vivo half-life extension using recombinant albumin fusions tuned for neonatal Fc receptor (FcRn) engagement. Journal of Controlled Release, 2018, 287, 132-141.	9.9	29
20	Palmitoylated phosphodiester gapmer designs with albumin binding capacity and maintained <i>in vitro</i> gene silencing activity. Journal of Gene Medicine, 2018, 20, e3025.	2.8	4
21	The random co-polymer glatiramer acetate rapidly kills primary human leukocytes through sialic-acid-dependent cell membrane damage. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 425-437.	2.6	15
22	Hyaluronic Acid Molecular Weight-Dependent Modulation of Mucin Nanostructure for Potential Mucosal Therapeutic Applications. Molecular Pharmaceutics, 2017, 14, 2359-2367.	4.6	28
23	Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding. Nanotechnology, 2017, 28, 204004.	2.6	20
24	A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis. Journal of Controlled Release, 2017, 253, 153-159.	9.9	47
25	Pelletâ€free isolation of human and bovine milk extracellular vesicles by sizeâ€exclusion chromatography. Journal of Extracellular Vesicles, 2017, 6, 1294340.	12.2	101
26	The Immunomodulatory Drug Glatiramer Acetate is Also an Effective Antimicrobial Agent that Kills Gram-negative Bacteria. Scientific Reports, 2017, 7, 15653.	3.3	25
27	An Albumin-Oligonucleotide Assembly for Potential Combinatorial Drug Delivery and Half-Life Extension Applications. Molecular Therapy - Nucleic Acids, 2017, 9, 284-293.	5.1	23
28	Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation. Molecular Therapy, 2017, 25, 1710-1717.	8.2	39
29	Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. Journal of Biological Chemistry, 2017, 292, 13312-13322.	3.4	60
30	Albumin-based drug delivery using cysteine 34 chemical conjugates – important considerations and requirements. Therapeutic Delivery, 2017, 8, 511-519.	2.2	20
31	An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing. Journal of Controlled Release, 2016, 232, 143-151.	9.9	31
32	Multimodal Imaging-Guided Antitumor Photothermal Therapy and Drug Delivery Using Bismuth Selenide Spherical Sponge. ACS Nano, 2016, 10, 9646-9658.	14.6	175
33	Humanâ€Serumâ€Albuminâ€Coated Prussian Blue Nanoparticles as pHâ€fThermotriggered Drugâ€Delivery Vehicles for Cancer Thermochemotherapy. Particle and Particle Systems Characterization, 2016, 33, 53-62.	2.3	42
34	Highly porous PEGylated Bi ₂ S ₃ nano-urchins as a versatile platform for in vivo triple-modal imaging, photothermal therapy and drug delivery. Nanoscale, 2016, 8, 16005-16016.	5.6	90
35	Albumin-based drug delivery: harnessing nature to cure disease. Molecular and Cellular Therapies, 2016, 4, 3.	0.2	480
36	Chipâ€Free Microscaleâ€Incubatorâ€Based Synthesis of Chitosanâ€Based Gene Silencing Nanoparticles. Particle and Particle Systems Characterization, 2016, 33, 279-285.	2.3	1

#	Article	IF	CITATIONS
37	Nanomedicine: Working Towards Defining the Field. Advances in Delivery Science and Technology, 2016, , 1-12.	0.4	5
38	Neonatal Fc Receptor Binding Tolerance toward the Covalent Conjugation of Payloads to Cysteine 34 of Human Albumin Variants. Molecular Pharmaceutics, 2016, 13, 677-682.	4.6	18
39	Multifunctional Bismuth Selenide Nanocomposites for Antitumor Thermo-Chemotherapy and Imaging. ACS Nano, 2016, 10, 984-997.	14.6	234
40	Generation of a double transgenic humanized neonatal Fc receptor (FcRn)/albumin mouse to study the pharmacokinetics of albumin-linked drugs. Journal of Controlled Release, 2016, 223, 22-30.	9.9	35
41	Mucin-mediated nanocarrier disassembly for triggered uptake of oligonucleotides as a delivery strategy for the potential treatment of mucosal tumours. Nanoscale, 2016, 8, 12599-12607.	5.6	10
42	Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness. Journal of Extracellular Vesicles, 2015, 4, 29685.	12.2	86
43	Tunable CD44-Specific Cellular Retargeting with Hyaluronic Acid Nanoshells. Pharmaceutical Research, 2015, 32, 1462-1474.	3.5	18
44	Albumin: the next-generation delivery technology. Therapeutic Delivery, 2015, 6, 265-268.	2.2	19
45	Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics. Advances in Genetics, 2014, 88, 325-352.	1.8	26
46	Extended blood circulation and joint accumulation of a p(HPMA-co-AzMA)-based nanoconjugate in a murine model of rheumatoid arthritis. Molecular and Cellular Therapies, 2014, 2, 29.	0.2	5
47	The application of RNAi-based treatments for inflammatory bowel disease. Drug Delivery and Translational Research, 2014, 4, 4-18.	5.8	12
48	RNA interference-based therapeutics and diagnostics. Drug Delivery and Translational Research, 2014, 4, 1-2.	5.8	2
49	Cell type and transfection reagent-dependent effects on viability, cell content, cell cycle and inflammation of RNAi in human primary mesenchymal cells. European Journal of Pharmaceutical Sciences, 2014, 53, 35-44.	4.0	19
50	Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics, 2014, 14, 699-712.	2.2	148
51	Polycation-based nanoparticles for RNAi-mediated cancer treatment. Cancer Letters, 2014, 352, 66-80.	7.2	22
52	Ultraporous interweaving electrospun microfibers from PCL–PEO binary blends and their inflammatory responses. Nanoscale, 2014, 6, 3392.	5.6	45
53	Mucus barrier-triggered disassembly of siRNA nanocarriers. Nanoscale, 2014, 6, 12547-12554.	5.6	11
54	Cellular Disposal of miR23b by RAB27-Dependent Exosome Release Is Linked to Acquisition of Metastatic Properties. Cancer Research, 2014, 74, 5758-5771.	0.9	237

#	Article	IF	CITATIONS
55	Spatial Mapping and Quantification of Soft and Hard Protein Coronas at Silver Nanocubes. Nano Letters, 2014, 14, 2086-2093.	9.1	85
56	Comparative analysis of discrete exosome fractions obtained by differential centrifugation. Journal of Extracellular Vesicles, 2014, 3, 25011.	12.2	262
57	Providing the full picture: a mandate for standardizing nanoparticle-based drug delivery. Nanomedicine, 2013, 8, 1031-1033.	3.3	10
58	Surface Analysis of PEGylated Nano-Shields on Nanoparticles Installed by Hydrophobic Anchors. Pharmaceutical Research, 2013, 30, 1758-1767.	3.5	10
59	Mucosal Delivery of RNAi Therapeutics. Advances in Delivery Science and Technology, 2013, , 97-125.	0.4	2
60	Clinical translation of RNAi-based treatments for respiratory diseases. Drug Delivery and Translational Research, 2013, 3, 84-99.	5.8	6
61	Protection and Systemic Translocation of siRNA Following Oral Administration of Chitosan/siRNA Nanoparticles. Molecular Therapy - Nucleic Acids, 2013, 2, e76.	5.1	65
62	Synthesis of clickâ€reactive HPMA copolymers using RAFT polymerization for drug delivery applications. Journal of Polymer Science Part A, 2013, 51, 5091-5099.	2.3	31
63	Peritoneal macrophages mediated delivery of chitosan/siRNA nanoparticle to the lesion site in a murine radiation-induced fibrosis model. Acta Oncológica, 2013, 52, 1730-1738.	1.8	22
64	Oligonucleotide Delivery to the Lung: Waiting to Inhale. Molecular Therapy - Nucleic Acids, 2012, 1, e1.	5.1	11
65	Polycation-based nanoparticle delivery of RNAi therapeutics: Adverse effects and solutions. Advanced Drug Delivery Reviews, 2012, 64, 1717-1729.	13.7	136
66	Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Nanoscale, 2012, 4, 2352.	5.6	61
67	Antimicrobial Effect of Chitosan Nanoparticles on Streptococcus mutans Biofilms. Applied and Environmental Microbiology, 2011, 77, 3892-3895.	3.1	183
68	Surface functionalisation of PLGA nanoparticles for gene silencing. Biomaterials, 2010, 31, 5671-5677.	11.4	53
69	Pulmonary Gene Silencing in Transgenic EGFP Mice Using Aerosolised Chitosan/siRNA Nanoparticles. Pharmaceutical Research, 2010, 27, 2520-2527.	3.5	87
70	Chitosan/siRNA Nanoparticles Biofunctionalize Nerve Implants and Enable Neurite Outgrowth. Nano Letters, 2010, 10, 3933-3939.	9.1	78
71	siRNA Nanoparticle Functionalization of Nanostructured Scaffolds Enables Controlled Multilineage Differentiation of Stem Cells. Molecular Therapy, 2010, 18, 2018-2027.	8.2	81
72	Bioresponsive hyperbranched polymers for siRNA and miRNA delivery. Journal of Drug Targeting, 2010, 18, 812-820.	4.4	43

#	Article	IF	CITATIONS
73	Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFα prevents radiation-induced fibrosis. Radiotherapy and Oncology, 2010, 97, 143-148.	0.6	57
74	Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors. ACS Nano, 2009, 3, 1947-1951.	14.6	242
75	Chitosan/siRNA Nanoparticle–mediated TNF-α Knockdown in Peritoneal Macrophages for Anti-inflammatory Treatment in a Murine Arthritis Model. Molecular Therapy, 2009, 17, 162-168.	8.2	270
76	Intracellular siRNA and precursor miRNA trafficking using bioresponsive copolypeptides. Journal of Gene Medicine, 2008, 10, 81-93.	2.8	43
77	Delivery of siRNA from lyophilized polymeric surfaces. Biomaterials, 2008, 29, 506-512.	11.4	100
78	Visualization of thermally activated nanocarriers usingin situatomic force microscopy. Nanotechnology, 2007, 18, 185501.	2.6	3
79	Direct Force Measurements between siRNA and Chitosan Molecules Using Force Spectroscopy. Biophysical Journal, 2007, 93, 952-959.	0.5	52
80	Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert Opinion on Biological Therapy, 2007, 7, 1811-1822.	3.1	44
81	The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials, 2007, 28, 1280-1288.	11.4	382
82	Nanocarrier Stimuli-Activated Gene Delivery. Small, 2007, 3, 54-57.	10.0	48
83	RNA Interference in Vitro and in Vivo Using a Novel Chitosan/siRNA Nanoparticle System. Molecular Therapy, 2006, 14, 476-484.	8.2	549
84	Protection against bubonic and pneumonic plague with a single dose microencapsulated sub-unit vaccine. Vaccine, 2006, 24, 4433-4439.	3.8	33
85	Formulation of a microparticle carrier for oral polyplex-based DNA vaccines. Journal of Financial Economics, 2004, 1674, 149-57.	9.0	15
86	Importance of Lateral and Steric Stabilization of Polyelectrolyte Gene Delivery Vectors for Extended Systemic Circulation. Molecular Therapy, 2002, 5, 463-472.	8.2	273
87	Physicochemical and biological characterisation of an antisense oligonucleotide targeted against the bcl-2 mRNA complexed with cationic–hydrophilic copolymers. European Journal of Pharmaceutical Sciences, 2000, 10, 169-177.	4.0	26
88	Decreased Binding to Proteins and Cells of Polymeric Gene Delivery Vectors Surface Modified with a Multivalent Hydrophilic Polymer and Retargeting through Attachment of Transferrin. Journal of Biological Chemistry, 2000, 275, 3793-3802.	3.4	148
89	Steric Stabilization of poly-l-Lysine/DNA Complexes by the Covalent Attachment of Semitelechelic poly[N-(2-Hydroxypropyl)methacrylamide]. Bioconjugate Chemistry, 2000, 11, 492-501.	3.6	109
90	Functionalized Acyclic (L)â€Threoninol Nucleic Acid Four Way Junction with High Stability in Vitro and in Vivo. Angewandte Chemie, 0, , .	2.0	0