Nina C. Berner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6895533/publications.pdf

Version: 2024-02-01

236925 377865 4,857 35 25 34 h-index citations g-index papers 35 35 35 8598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lithium Titanate/Carbon Nanotubes Composites Processed by Ultrasound Irradiation as Anodes for Lithium Ion Batteries. Scientific Reports, 2017, 7, 7614.	3.3	17
2	Enabling Flexible Heterostructures for Liâ€Ion Battery Anodes Based on Nanotube and Liquidâ€Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutions. Small, 2017, 13, 1701677.	10.0	71
3	Functionalization of Twoâ€Dimensional MoS ₂ : On the Reaction Between MoS ₂ and Organic Thiols. Angewandte Chemie - International Edition, 2016, 55, 5803-5808.	13.8	219
4	The goldilocks electrolyte: examining the performance of iron/nickel oxide thin films as catalysts for electrochemical water splitting in various aqueous NaOH solutions. Journal of Materials Chemistry A, 2016, 4, 11397-11407.	10.3	47
5	Raman characterization of platinum diselenide thin films. 2D Materials, 2016, 3, 021004.	4.4	172
6	High-Performance Hybrid Electronic Devices from Layered PtSe ₂ Films Grown at Low Temperature. ACS Nano, 2016, 10, 9550-9558.	14.6	310
7	A New 2H-2H′/1T Cophase in Polycrystalline MoS ₂ and MoSe ₂ Thin Films. ACS Applied Materials & Discrete Substitution (1998). Applied Materials & Discrete Substitution (1998	8.0	33
8	Production of Ni(OH) < sub > 2 < /sub > nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	10.3	71
9	Functionalization of Twoâ€Dimensional MoS ₂ : On the Reaction Between MoS ₂ and Organic Thiols. Angewandte Chemie, 2016, 128, 5897-5902.	2.0	46
10	Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe ₂ to be the most effective hydrogen evolution catalyst. Nanoscale, 2016, 8, 5737-5749.	5.6	127
11	A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. ACS Nano, 2016, 10, 3702-3713.	14.6	394
12	Largeâ€Scale Diffusion Barriers from CVD Grown Graphene. Advanced Materials Interfaces, 2015, 2, 1500082.	3.7	12
13	Noncovalently Functionalized Monolayer Graphene for Sensitivity Enhancement of Surface Plasmon Resonance Immunosensors. Journal of the American Chemical Society, 2015, 137, 2800-2803.	13.7	190
14	Functionalization of Liquidâ€Exfoliated Twoâ€Dimensional 2Hâ€MoS ₂ . Angewandte Chemie - International Edition, 2015, 54, 2638-2642.	13.8	219
15	Functionalization of Liquidâ€Exfoliated Twoâ€Dimensional 2Hâ€MoS ₂ . Angewandte Chemie, 2015, 127, 2676-2680.	2.0	35
16	Direct Observation of Degenerate Two-Photon Absorption and Its Saturation in WS ₂ and MoS ₂ Monolayer and Few-Layer Films. ACS Nano, 2015, 9, 7142-7150.	14.6	322
17	Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. ACS Nano, 2015, 9, 6018-6030.	14.6	293
18	Investigation of 2D transition metal dichalcogenide films for electronic devices., 2015,,.		4

#	Article	IF	CITATIONS
19	Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chemistry of Materials, 2015, 27, 3483-3493.	6.7	195
20	Atomic layer deposition on 2D transition metal chalcogenides: layer dependent reactivity and seeding with organic ad-layers. Chemical Communications, 2015, 51, 16553-16556.	4.1	39
21	On-surface derivatisation of aromatic molecules on graphene: the importance of packing density. Chemical Communications, 2015, 51, 16778-16781.	4.1	14
22	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6, 8563.	12.8	921
23	Understanding and optimising the packing density of perylene bisimide layers on CVD-grown graphene. Nanoscale, 2015, 7, 16337-16342.	5.6	25
24	Optimisation of copper catalyst by the addition of chromium for the chemical vapour deposition growth of monolayer graphene. Carbon, 2015, 95, 789-793.	10.3	1
25	Inkjet-defined field-effect transistors from chemical vapour deposited graphene. Carbon, 2014, 71, 332-337.	10.3	17
26	Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Applied Surface Science, 2014, 297, 139-146.	6.1	144
27	Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymerâ€Assisted Transfer. Advanced Materials Interfaces, 2014, 1, 1400115.	3.7	98
28	Plasma assisted synthesis of WS2 for gas sensing applications. Chemical Physics Letters, 2014, 615, 6-10.	2.6	150
29	Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nature Communications, 2014, 5, 4576.	12.8	432
30	Effect of Percolation on the Capacitance of Supercapacitor Electrodes Prepared from Composites of Manganese Dioxide Nanoplatelets and Carbon Nanotubes. ACS Nano, 2014, 8, 9567-9579.	14.6	89
31	Molybdenum disulfide/pyrolytic carbon hybrid electrodes for scalable hydrogen evolution. Nanoscale, 2014, 6, 8185.	5.6	48
32	Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply. Scientific Reports, 2014, 4, 7374.	3.3	72
33	Adsorption of 5,10,15,20â€tetrakis (4â€bromophenyl)porphyrin on germanium(001). Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1404-1407.	0.8	6
34	Cleaning and growth morphology of GaN and InGaN surfaces. Physica Status Solidi (B): Basic Research, 2011, 248, 1800-1809.	1.5	13
35	Oxide removal from GaN(0001) surfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S305.	0.8	11