Naoaki Yabuuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6895295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research Development on Sodium-Ion Batteries. Chemical Reviews, 2014, 114, 11636-11682.	47.7	4,970
2	Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chemistry, 2011, 3, 546-550.	13.6	2,331
3	P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable NaÂbatteries. Nature Materials, 2012, 11, 512-517.	27.5	1,884
4	Electrochemical Na Insertion and Solid Electrolyte Interphase for Hardâ€Carbon Electrodes and Application to Naâ€lon Batteries. Advanced Functional Materials, 2011, 21, 3859-3867.	14.9	1,717
5	Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li ₂ MnO ₃ â^LiCo _{1/3} Ni _{1/3} Mn _{1/3} O ₂ Journal of the American Chemical Society, 2011, 133, 4404-4419.	13.7	1,066
6	High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology, 2010, 5, 531-537.	31.5	1,026
7	Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources, 2003, 119-121, 171-174.	7.8	770
8	Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries. ACS Applied Materials & Interfaces, 2011, 3, 4165-4168.	8.0	595
9	Study on the Reversible Electrode Reaction of Na _{1–<i>x</i>} Ni _{0.5} Mn _{0.5} O ₂ for a Rechargeable Sodium-Ion Battery. Inorganic Chemistry, 2012, 51, 6211-6220.	4.0	593
10	Negative electrodes for Na-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 15007.	2.8	555
11	Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochemistry Communications, 2010, 12, 355-358.	4.7	509
12	High-capacity electrode materials for rechargeable lithium batteries: Li ₃ NbO ₄ -based system with cation-disordered rocksalt structure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7650-7655.	7.1	400
13	Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochemistry Communications, 2012, 21, 65-68.	4.7	384
14	Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 13487-13495.	3.1	344
15	Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode. Journal of the Electrochemical Society, 2010, 157, B1263.	2.9	339
16	P2-type Na _{2/3} Ni _{1/3} Mn _{2/3â^'x} Ti _x O ₂ as a new positive electrode for higher energy Na-ion batteries. Chemical Communications, 2014, 50, 3677-3680.	4.1	334
17	Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nature Communications, 2016, 7, 13814.	12.8	330
18	Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries. Electrochemistry, 2012, 80, 716-719.	1.4	329

#	Article	IF	CITATIONS
19	Solid-State Chemistry and Electrochemistry of LiCo[sub 1â^•3]Ni[sub 1â^•3]Mn[sub 1â^•3]O[sub 2] for Advanced Lithium-Ion Batteries. Journal of the Electrochemical Society, 2007, 154, A314.	2.9	328
20	New O2/P2â€type Liâ€Excess Layered Manganese Oxides as Promising Multiâ€Functional Electrode Materials for Rechargeable Li/Na Batteries. Advanced Energy Materials, 2014, 4, 1301453.	19.5	307
21	A new electrode material for rechargeable sodium batteries: P2-type Na _{2/3} [Mg _{0.28} Mn _{0.72}]O ₂ with anomalously high reversible capacity. Journal of Materials Chemistry A, 2014, 2, 16851-16855.	10.3	284
22	Probing the Origin of Enhanced Stability of "AlPO ₄ ―Nanoparticle Coated LiCoO ₂ during Cycling to High Voltages: Combined XRD and XPS Studies. Chemistry of Materials, 2009, 21, 4408-4424.	6.7	279
23	Enhanced Activity for Oxygen Reduction Reaction on "Pt ₃ Co―Nanoparticles: Direct Evidence of Percolated and Sandwich-Segregation Structures. Journal of the American Chemical Society, 2008, 130, 13818-13819.	13.7	271
24	Origin of Oxygen Reduction Reaction Activity on "Pt ₃ Co―Nanoparticles: Atomically Resolved Chemical Compositions and Structures. Journal of Physical Chemistry C, 2009, 113, 1109-1125.	3.1	267
25	NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochemistry Communications, 2013, 34, 60-63.	4.7	262
26	Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochemistry Communications, 2011, 13, 1225-1228.	4.7	244
27	Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Electrolyte Interface. Chemistry of Materials, 2016, 28, 1625-1635.	6.7	238
28	Layered oxides as positive electrode materials for Na-ion batteries. MRS Bulletin, 2014, 39, 416-422.	3.5	208
29	Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Siâ€ ⁴ Graphite Composite Negative Electrodes in Li-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 1380-1389.	3.1	203
30	Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Science and Technology of Advanced Materials, 2014, 15, 043501.	6.1	199
31	Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surfaceâ€Stabilization Mechanism in Aprotic Solvent. ChemElectroChem, 2014, 1, 580-589.	3.4	196
32	Roles of Surface Steps on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol. Journal of the American Chemical Society, 2009, 131, 15669-15677.	13.7	186
33	Synthesis and Electrode Performance of O3-Type NaFeO ₂ -NaNi _{1/2} Mn _{1/2} O ₂ Solid Solution for Rechargeable Sodium Batteries. Journal of the Electrochemical Society, 2013, 160, A3131-A3137.	2.9	182
34	Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries. Electrochemistry Communications, 2014, 44, 66-69.	4.7	182
35	Solid-State Chemistry and Electrochemistry of LiCo[sub 1â^•3]Ni[sub 1â^•3]Mn[sub 1â^•3]O[sub 2] for Advanced Lithium-Ion Batteries. Journal of the Electrochemical Society, 2005, 152, A1434.	2.9	179
36	NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. Journal of Power Sources, 2013, 225, 137-140.	7.8	165

#	Article	IF	CITATIONS
37	High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy and Environmental Science, 2012, 5, 9014.	30.8	156
38	Solid-State Chemistry and Electrochemistry of LiCo[sub 1/3]Ni[sub 1/3]Mn[sub 1/3]O[sub 2] for Advanced Lithium-Ion Batteries. Journal of the Electrochemical Society, 2004, 151, A1545.	2.9	154
39	Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe[sub 3]O[sub 4] and α-Fe[sub 2]O[sub 3] for Rechargeable Batteries. Journal of the Electrochemical Society, 2010, 157, A60.	2.9	152
40	New Insight into Structural Evolution in Layered NaCrO ₂ during Electrochemical Sodium Extraction. Journal of Physical Chemistry C, 2015, 119, 166-175.	3.1	152
41	Structural Analysis of Sucrose-Derived Hard Carbon and Correlation with the Electrochemical Properties for Lithium, Sodium, and Potassium Insertion. Chemistry of Materials, 2020, 32, 2961-2977.	6.7	150
42	Effect of Hexafluorophosphate and Fluoroethylene Carbonate on Electrochemical Performance and the Surface Layer of Hard Carbon for Sodiumâ€ion Batteries. ChemElectroChem, 2016, 3, 1856-1867.	3.4	147
43	Graphiteâ€Siliconâ€Polyacrylate Negative Electrodes in Ionic Liquid Electrolyte for Safer Rechargeable Liâ€Ion Batteries. Advanced Energy Materials, 2011, 1, 759-765.	19.5	140
44	Understanding the Structural Evolution and Redox Mechanism of a NaFeO ₂ –NaCoO ₂ Solid Solution for Sodiumâ€ion Batteries. Advanced Functional Materials, 2016, 26, 6047-6059.	14.9	132
45	Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media. Journal of Power Sources, 2010, 195, 6069-6074.	7.8	122
46	Changes in the Cation Ordering of Layered O3 LixNi0.5Mn0.5O2during Electrochemical Cycling to High Voltages:Â An Electron Diffraction Study. Chemistry of Materials, 2007, 19, 2551-2565.	6.7	121
47	Electrochemical behaviors of LiCo1/3Ni1/3Mn1/3O2 in lithium batteries at elevated temperatures. Journal of Power Sources, 2005, 146, 636-639.	7.8	108
48	A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries. RSC Advances, 2013, 3, 3857.	3.6	104
49	Cropâ€Derived Polysaccharides as Binders for Highâ€Capacity Silicon/Graphiteâ€Based Electrodes in Lithiumâ€lon Batteries. ChemSusChem, 2012, 5, 2307-2311.	6.8	92
50	Thermal Instability of Cycled Li _{<i>x</i>} Ni _{0.5} Mn _{0.5} O ₂ Electrodes: An in Situ Synchrotron X-ray Powder Diffraction Study. Chemistry of Materials, 2008, 20, 4936-4951.	6.7	87
51	Lithium-Excess Cation-Disordered Rocksalt-Type Oxide with Nanoscale Phase Segregation: Li _{1.25} Nb _{0.25} V _{0.5} O ₂ . Chemistry of Materials, 2017, 29, 6927-6935.	6.7	87
52	Electrochemical Properties of LiCoO ₂ Electrodes with Latex Binders on High-Voltage Exposure. Journal of the Electrochemical Society, 2015, 162, A538-A544.	2.9	80
53	Understanding Particle-Size-Dependent Electrochemical Properties of Li ₂ MnO ₃ -Based Positive Electrode Materials for Rechargeable Lithium Batteries. Journal of Physical Chemistry C, 2016, 120, 875-885.	3.1	77
54	Synthesis and electrochemical properties of Li _{1.3} Nb _{0.3} V _{0.4} O ₂ as a positive electrode material for rechargeable lithium batteries. Chemical Communications, 2016, 52, 2051-2054.	4.1	76

#	Article	IF	CITATIONS
55	A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid-State Method for Rechargeable Na-Ion Batteries. Electrochemistry, 2012, 80, 80-84.	1.4	72
56	Electrochemical lithiation performance and characterization of silicon–graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders. Physical Chemistry Chemical Physics, 2015, 17, 3783-3795.	2.8	72
57	Effect of heat-treatment process on FeF3 nanocomposite electrodes for rechargeable Li batteries. Journal of Materials Chemistry, 2011, 21, 10035.	6.7	69
58	Reversible Three-Electron Redox Reaction of Mo ³⁺ /Mo ⁶⁺ for Rechargeable Lithium Batteries. ACS Energy Letters, 2017, 2, 733-738.	17.4	61
59	Cross-Linked Poly(acrylic acid) with Polycarbodiimide as Advanced Binder for Si/Graphite Composite Negative Electrodes in Li-Ion Batteries. ECS Electrochemistry Letters, 2012, 2, A17-A20.	1.9	59
60	Solid-state Redox Reaction of Oxide lons for Rechargeable Batteries. Chemistry Letters, 2017, 46, 412-422.	1.3	59
61	Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO 2 – x LiF (0 ≤ ≤2) binary system. Journal of Power Sources, 2017, 367, 122-129.	7.8	59
62	Metastable and nanosize cation-disordered rocksalt-type oxides: revisit of stoichiometric LiMnO ₂ and NaMnO ₂ . Journal of Materials Chemistry A, 2018, 6, 13943-13951.	10.3	59
63	Material Design Concept of Lithiumâ€Excess Electrode Materials with Rocksaltâ€Related Structures for Rechargeable Nonâ€Aqueous Batteries. Chemical Record, 2019, 19, 690-707.	5.8	59
64	Layered Na _{<i>x</i>} Cr _{<i>x</i>} Ti _{1–<i>x</i>} O ₂ as Bifunctional Electrode Materials for Rechargeable Sodium Batteries. Chemistry of Materials, 2016, 28, 7006-7016.	6.7	56
65	Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials. Nature, 2021, 594, 213-216.	27.8	56
66	Synthesis and Electrochemical Properties of Li ₄ MoO ₅ –NiO Binary System as Positive Electrode Materials for Rechargeable Lithium Batteries. Chemistry of Materials, 2016, 28, 416-419.	6.7	55
67	Materials Strategy for Advanced Lithium-Ion (Shuttlecock) Batteries: Lithium Nickel Manganese Oxides with or without Cobalt. Electrochemistry, 2005, 73, 2-11.	1.4	53
68	Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries. Electrochemistry, 2011, 79, 6-9.	1.4	52
69	High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries. Journal of Power Sources, 2017, 363, 404-412.	7.8	52
70	A Comparative Study of LiCoO ₂ Polymorphs: Structural and Electrochemical Characterization of O2-, O3-, and O4-type Phases. Inorganic Chemistry, 2013, 52, 9131-9142.	4.0	51
71	Structural and Electrochemical Characterizations on Li ₂ MnO ₃ -LiCoO ₂ -LiCrO ₂ System as Positive Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2013, 160, A39-A45.	2.9	51
72	Electrochemical behavior and structural change of spinel-type Li[Li Mn2â^']O4 (x= 0 and 0.2) in sodium cells. Electrochimica Acta, 2012, 82, 296-301.	5.2	50

Ναοακι Υαβυματι

#	Article	IF	CITATIONS
73	Na2CoPO4F as a High-voltage Electrode Material for Na-ion Batteries. Electrochemistry, 2014, 82, 909-911.	1.4	49
74	Changes in the Crystal Structure and Electrochemical Properties of Li[sub x]Ni[sub 0.5]Mn[sub 0.5]O[sub 2] during Electrochemical Cycling to High Voltages. Journal of the Electrochemical Society, 2007, 154, A566.	2.9	46
75	Nano-structured birnessite prepared by electrochemical activation of manganese(III)-based oxides for aqueous supercapacitors. Electrochimica Acta, 2012, 59, 455-463.	5.2	46
76	Activation and stabilization mechanisms of anionic redox for Li storage applications: Joint experimental and theoretical study on Li2TiO3–LiMnO2 binary system. Materials Today, 2020, 37, 43-55.	14.2	46
77	Impact of the Cut-Off Voltage on Cyclability and Passive Interphase of Sn-Polyacrylate Composite Electrodes for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 15017-15026.	3.1	40
78	Na-Excess Cation-Disordered Rocksalt Oxide: Na _{1.3} Nb _{0.3} Mn _{0.4} O ₂ . Chemistry of Materials, 2017, 29, 5043-5047.	6.7	38
79	Charge Compensation Mechanism of Lithium-Excess Metal Oxides with Different Covalent and Ionic Characters Revealed by <i>Operando</i> Soft and Hard X-ray Absorption Spectroscopy. Chemistry of Materials, 2020, 32, 139-147.	6.7	37
80	Thermal Stability of Na _{<i>x</i>} CrO ₂ for Rechargeable Sodium Batteries; Studies by High-Temperature Synchrotron X-ray Diffraction. ACS Applied Materials & Interfaces, 2016, 8, 32292-32299.	8.0	36
81	Acrylic Acid-Based Copolymers as Functional Binder for Silicon/Graphite Composite Electrode in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2245-A2249.	2.9	35
82	Improved Electrode Performance of Lithium-Excess Molybdenum Oxyfluoride: Titanium Substitution with Concentrated Electrolyte. ACS Applied Energy Materials, 2019, 2, 1629-1633.	5.1	34
83	Why is the O3 to O1 phase transition hindered in LiNiO ₂ on full delithiation?. Journal of Materials Chemistry A, 2021, 9, 15963-15967.	10.3	34
84	Low-temperature phase of Li2FeSiO4: crystal structure and a preliminary study of electrochemical behavior. Dalton Transactions, 2011, 40, 1846.	3.3	33
85	Effect of Nanosizing on Reversible Sodium Storage in a NaCrO ₂ Electrode. ACS Applied Nano Materials, 2018, 1, 364-370.	5.0	32
86	Improved High-Temperature Performance and Surface Chemistry of Graphite/LiMn2O4 Li-Ion Cells by Fluorosilane-Based Electrolyte Additive. Electrochimica Acta, 2015, 160, 347-356.	5.2	31
87	Synthesis and Electrode Performance of Li ₄ MoO ₅ -LiFeO ₂ Binary System as Positive Electrode Materials for Rechargeable Lithium Batteries. Electrochemistry, 2016, 84, 797-801.	1.4	30
88	Hydrothermal Synthesis and Characterization of Li2FeSiO4 as Positive Electrode Materials for Li-Ion Batteries. Electrochemistry, 2010, 78, 363-366.	1.4	28
89	Fabrication of Carbonâ€Feltâ€Based Multiâ€Enzyme Immobilized Anodes to Oxidize Sucrose for Biofuel Cells. ChemPhysChem, 2014, 15, 2145-2151.	2.1	27
90	A New Polymorph of Layered LiCoO2. Chemistry Letters, 2009, 38, 954-955.	1.3	22

#	Article	IF	CITATIONS
91	Efficient Electrolyte Additives of Phosphate, Carbonate, and Borate to Improve Redox Capacitor Performance of Manganese Oxide Electrodes. Journal of the Electrochemical Society, 2013, 160, A1952-A1961.	2.9	22
92	Nanostructured LiMnO ₂ with Li ₃ PO ₄ Integrated at the Atomic Scale for High-Energy Electrode Materials with Reversible Anionic Redox. ACS Central Science, 2020, 6, 2326-2338.	11.3	22
93	High-temperature X-ray diffraction study of crystallization and phase segregation on spinel-type lithium manganese oxides. Journal of Solid State Chemistry, 2010, 183, 234-241.	2.9	21
94	All-solid-state ion-selective electrodes with redox-active lithium, sodium, and potassium insertion materials as the inner solid-contact layer. Analyst, The, 2017, 142, 3857-3866.	3.5	20
95	Nanosize Cationâ€Disordered Rocksalt Oxides: Na ₂ TiO ₃ –NaMnO ₂ Binary System. Small, 2020, 16, e1902462.	10.0	20
96	The Influence of Heat-Treatment Temperature on the Cation Distribution of LiNi[sub 0.5]Mn[sub 0.5]O[sub 2] and Its Rate Capability in Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2011, 158, A192.	2.9	16
97	Acrylonitrile-grafted poly(vinyl alcohol) copolymer as effective binder for high-voltage spinel positive electrode. Journal of Power Sources, 2017, 358, 121-127.	7.8	16
98	Fundamentals of metal oxide/oxyfluoride electrodes for Li-/Na-ion batteries. Chemical Physics Reviews, 2021, 2, .	5.7	16
99	Electrochemical Control of the Magnetic Moment of CrO[sub 2]. Journal of the Electrochemical Society, 2008, 155, P83.	2.9	15
100	The Influence of Surface Chemistry on the Rate Capability of LiNi[sub 0.5]Mn[sub 0.5]O[sub 2] for Lithium Rechargeable Batteries. Electrochemical and Solid-State Letters, 2010, 13, A158.	2.2	15
101	Efficient Stabilization of Na Storage Reversibility by Ti Integration into O′3-Type NaMnO ₂ . Energy Material Advances, 2021, 2021, .	11.0	15
102	Nanosized and metastable molybdenum oxides as negative electrode materials for durable high-energy aqueous Li-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
103	Rational material design of Li-excess metal oxides with disordered rock salt structure. Current Opinion in Electrochemistry, 2022, 34, 100978.	4.8	15
104	Synthesis of Conjugated Carbonyl Containing Polymer Negative Electrodes for Sodium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A434-A438.	2.9	14
105	Influence of Synthesis Conditions on Electrochemical Properties of P2â€Type Na _{2/3} Fe _{2/3} Mn _{1/3} O ₂ for Rechargeable Na Batteries. Small Methods, 2019, 3, 1800032.	8.6	14
106	Degradation Mechanisms of Electric Double Layer Capacitors with Activated Carbon Electrodes on High Voltage Exposure. Electrochemistry, 2015, 83, 609-618.	1.4	12
107	Improvement of Electrochemical Performance of Bilirubin Oxidase Modified Gas Diffusion Biocathode by Hydrophilic Binder. Journal of the Electrochemical Society, 2015, 162, F1425-F1430.	2.9	11
108	Metastable and Nanosized Li _{1.2} Nb _{0.2} V _{0.6} O ₂ for High-Energy Li-ion Batteries. Electrochemistry, 2022, 90, 037005-037005.	1.4	10

#	Article	IF	CITATIONS
109	Unexpectedly Large Contribution of Oxygen to Charge Compensation Triggered by Structural Disordering: Detailed Experimental and Theoretical Study on a Li ₃ NbO ₄ –NiO Binary System. ACS Central Science, 2022, 8, 775-794.	11.3	10
110	Li _{4/3} Ni _{1/3} Mo _{1/3} O ₂ – LiNi _{1/2} Mn _{1/2} O ₂ Binary System as High Capacity Positive Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2018, 165, A1357-A1362.	2.9	9
111	Li/Na Storage Properties of Disordered Carbons Synthesized by Mechanical Milling. Electrochemistry, 2019, 87, 276-280.	1.4	8
112	Effect of diphenylethane as an electrolyte additive to enhance high-temperature durability of LiCoO2/graphite cells. Electrochimica Acta, 2018, 270, 120-128.	5.2	7
113	Highly Graphitic Carbon Coating on Li _{1.25} Nb _{0.25} V _{0.5} O ₂ Derived from a Precursor with a Perylene Core for High-Power Battery Applications. Chemistry of Materials, 2022, 34, 1946-1955.	6.7	7
114	P2-type layered Na _{0.67} Cr _{0.33} Mg _{0.17} Ti _{0.5} O ₂ for Na storage applications. Chemical Communications, 2021, 57, 2756-2759.	4.1	6
115	Double-layered polyion complex for application to biosensing electrodes. Electrochemistry Communications, 2014, 47, 88-91.	4.7	5
116	Magnetic Compton Scattering Study of Li-Rich Battery Materials. Condensed Matter, 2022, 7, 4.	1.8	5
117	Tuning cation migration. Nature Materials, 2020, 19, 372-373.	27.5	4
118	Rocksalt and Layered Metal Sulfides for Li Storage Applications: LiMe _{0.5} Ti _{0.5} S ₂ (Me = Fe ²⁺ , Mn ²⁺ , and) Tj ETQ	q @.0 0 rgE	T3/Overlock
119	2.ãfŠãf^ãfªã,¦ãfã,ã,ªãf³äºŒæ¬¡é›»æ±â€"æ–°ã⊷ã,é›»æ±å応系ã,ã®æŒ'æ^¦â€". Electrochemistry, 2012,	80,493-97.	2
120	Corrigendum to "Efficient Stabilization of Na Storage Reversibility by Ti Integration into O [′] 3-Type NaMnO ₂ ― Energy Material Advances, 2021, 2021, .	11.0	2
121	Partially reversible changes in magnetic properties of CrO2 nanoparticles through electrochemical cycling. Journal of Applied Physics, 2008, 103, 07D708.	2.5	1
122	Neutralized Poly(Acrylic Acid) as Polymer Binder for High Capacity Silicon Negative Electrodes. ECS Meeting Abstracts, 2011, , .	0.0	1
123	Origin of Stabilization and Destabilization in Solid-State Redox Reaction of Oxide Ions for Rechargeable Lithium Batteries. ECS Meeting Abstracts, 2016, , .	0.0	1
124	Materials Strategy for Advanced Lithium-Ion (Shuttlecock) Batteries: Lithium Nickel Manganese Oxides with or Without Cobalt. ChemInform, 2005, 36, no.	0.0	0
125	Crystal Structures and Electrochemical Properties of P2/O2-type Mn-based Layered Oxides. Hamon, 2015, 25, 264-267.	0.0	0

8

Ναοακι Υαβυματι

#	Article	IF	CITATIONS
127	Electrochemical Properties of High-Voltage Spinel Positive Electrodes Prepared with Non-Fluorine PAN-Based Binders. ECS Meeting Abstracts, 2016, , .	0.0	0
128	Li1.2Ti0.4Mn0.4O2 As 300 m Ah g-1-Class Electrode Material Using Redox Reaction of Oxide Ions. ECS Meeting Abstracts, 2016, , .	0.0	0
129	Layered Na x Cr x Ti1-X O2 As Bi-Functional Electrode Materials for Rechargeable Sodium Batteries. ECS Meeting Abstracts, 2016, , .	0.0	Ο
130	Charge/Discharge Reaction Mechanisms of Nanosized Li-Excess Li2TiO3–LiVO2 System. ECS Meeting Abstracts, 2021, MA2021-02, 1675-1675.	0.0	0
131	Synthesis and Electrochemical Properties of Mg-Substituted Ni/Mn-Based High-Voltage Spinel Oxides. ECS Meeting Abstracts, 2020, MA2020-02, 3540-3540.	0.0	0
132	Factors Affecting on Electrochemical Properties of O3-Type NaFeO ₂ for Sodium Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 3539-3539.	0.0	0
133	Highly Reversible Anionic Redox without Voltage Decay. ECS Meeting Abstracts, 2020, MA2020-02, 3537-3537.	0.0	Ο
134	Electrochemical Properties of LiNiO2 Integrated with Nanosize Li3PO4. ECS Meeting Abstracts, 2020, MA2020-02, 3533-3533.	0.0	0
135	Rechargeable Aqueous Lithium-Ion Batteries with Molybdenum-Based Oxides As Negative Electrode Materials. ECS Meeting Abstracts, 2020, MA2020-02, 3538-3538.	0.0	0
136	(Invited) Nanostructured Rocksalt-Based Positive Electrode Materials for Rechargeable Li/Na Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 510-510.	0.0	0
137	Impact of Nb Substitution on Crystal Structures and Electrode Reversibility of LiNiO2. ECS Meeting Abstracts, 2020, MA2020-02, 3535-3535.	0.0	ο
138	Lithium Storage Properties of Rocksalt-Type Li-Excess Titanium Sulfides. ECS Meeting Abstracts, 2020, MA2020-02, 3534-3534.	0.0	0
139	(Invited) Nanostructured High-Capacity Positive Electrode Materials for Li-Ion Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 191-191.	0.0	0
140	Studies on Electrochemistry and Factors Affecting Phase Transition Behavior of LiMnO2 Polymorphs. ECS Meeting Abstracts, 2021, MA2021-02, 1677-1677.	0.0	0
141	High Capacity Li-Excess Vanadium Oxides for Positive Electrode Materials. ECS Meeting Abstracts, 2020, MA2020-02, 3536-3536.	0.0	Ο
142	Electrochemical Properties of Ti-Based Negative Electrode Materials with Different Binders Possessing Branched Structures for Rechargeable Sodium-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 3541-3541.	0.0	0
143	Extended conjugated carbonyl-containing polymer as a negative electrode material for Na-ion batteries. Polymer Journal, 0, , .	2.7	О