
Xuemei Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892649/publications.pdf Version: 2024-02-01

XHEMEL REN

#	Article	IF	CITATIONS
1	Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environmental Science & Technology, 2011, 45, 10454-10462.	10.0	1,594
2	Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Transactions, 2011, 40, 10945.	3.3	488
3	Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Advances, 2012, 2, 8821.	3.6	300
4	Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions, 2013, 42, 5266.	3.3	188
5	Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Advances, 2012, 2, 12400.	3.6	169
6	Polyaniline Multiwalled Carbon Nanotube Magnetic Composite Prepared by Plasma-Induced Graft Technique and Its Application for Removal of Aniline and Phenol. Journal of Physical Chemistry C, 2010, 114, 21524-21530.	3.1	161
7	Impact of Al ₂ O ₃ on the Aggregation and Deposition of Graphene Oxide. Environmental Science & Technology, 2014, 48, 5493-5500.	10.0	144
8	Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. RSC Advances, 2013, 3, 12909.	3.6	89
9	New Insight into GO, Cadmium(II), Phosphate Interaction and Its Role in GO Colloidal Behavior. Environmental Science & Technology, 2016, 50, 9361-9369.	10.0	85
10	X-ray absorption fine structure study of enhanced sequestration of U(<scp>vi</scp>) and Se(<scp>iv</scp>) by montmorillonite decorated with zero-valent iron nanoparticles. Environmental Science: Nano, 2016, 3, 1460-1472.	4.3	85
11	Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria. Environmental Science: Nano, 2017, 4, 1016-1024.	4.3	84
12	Coupling g-C3N4 nanosheets with metal-organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution. Journal of Colloid and Interface Science, 2019, 550, 117-127.	9.4	84
13	Immobilization of uranium by biomaterial stabilized FeS nanoparticles: Effects of stabilizer and enrichment mechanism. Journal of Hazardous Materials, 2016, 302, 1-9.	12.4	79
14	Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation. Environmental Pollution, 2018, 233, 125-131.	7.5	79
15	Graphene analogues in aquatic environments and porous media: dispersion, aggregation, deposition and transformation. Environmental Science: Nano, 2018, 5, 1298-1340.	4.3	68
16	Insights into key factors controlling GO stability in natural surface waters. Journal of Hazardous Materials, 2017, 335, 56-65.	12.4	64
17	Highly Cation Permselective Metal–Organic Framework Membranes with Leaf‣ike Morphology. ChemSusChem, 2019, 12, 2593-2597.	6.8	61
18	Graphene oxide interactions with co-existing heavy metal cations: adsorption, colloidal properties and joint toxicity. Environmental Science: Nano, 2018, 5, 362-371.	4.3	54

Xuemei Ren

#	Article	IF	CITATIONS
19	Mutual effects of copper and phosphate on their interaction with γ-Al2O3: Combined batch macroscopic experiments with DFT calculations. Journal of Hazardous Materials, 2012, 237-238, 199-208.	12.4	53
20	Macroscopic and spectroscopic insights into the mutual interaction of graphene oxide, Cu(II), and Mg/Al layered double hydroxides. Chemical Engineering Journal, 2017, 313, 527-534.	12.7	51
21	Exploring the Aggregation Mechanism of Graphene Oxide in the Presence of Radioactive Elements: Experimental and Theoretical Studies. Environmental Science & Technology, 2018, 52, 12208-12215.	10.0	49
22	Plasma Induced Multiwalled Carbon Nanotube Grafted with 2â€Vinylpyridine for Preconcentration of Pb(II) from Aqueous Solutions. Plasma Processes and Polymers, 2011, 8, 589-598.	3.0	41
23	Three dimensional flower-like magnetic polyethyleneimine@MoS2 composites for highly efficient removal of Cr(VI) and Pb(II) ions. Journal of Colloid and Interface Science, 2020, 580, 550-560.	9.4	40
24	Theoretical investigation of uranyl ion adsorption on hydroxylated \hat{I}^3 -Al2O3 surfaces. RSC Advances, 2013, 3, 19551.	3.6	37
25	Reductive immobilization of uranium by PAAM–FeS/Fe ₃ O ₄ magnetic composites. Environmental Science: Water Research and Technology, 2015, 1, 169-176.	2.4	36
26	Design of Chitosan-Grafted Carbon Nanotubes: Evaluation of How the –OH Functional Group Affects Cs+ Adsorption. Marine Drugs, 2015, 13, 3116-3131.	4.6	32
27	Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption. Journal of Industrial and Engineering Chemistry, 2018, 67, 380-387.	5.8	27
28	Environmental fate and risk of ultraviolet- and visible-light-transformed graphene oxide: A comparative study. Environmental Pollution, 2019, 251, 821-829.	7.5	27
29	Highly selective enrichment of radioactive cesium from solution by using zinc hexacyanoferrate(III)-functionalized magnetic bentonite. Journal of Colloid and Interface Science, 2020, 580, 171-179.	9.4	27
30	Controlled synthesized natroalunite microtubes applied for cadmium(II) and phosphate co–removal. Journal of Hazardous Materials, 2016, 314, 249-259.	12.4	26
31	Efficient removal of Cd(II) by core-shell Fe3O4@polydopamine microspheres from aqueous solution. Journal of Molecular Liquids, 2019, 295, 111724.	4.9	26
32	A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. Journal of Environmental Chemical Engineering, 2022, 10, 107325.	6.7	26
33	Co-sequestration of Zn(II) and phosphate by γ-Al2O3: From macroscopic to microscopic investigation. Journal of Hazardous Materials, 2015, 297, 134-145.	12.4	22
34	Colloidal properties and stability of UV-transformed graphene oxide in aqueous solutions: The role of disorder degree. Journal of Hazardous Materials, 2020, 382, 121097.	12.4	22
35	The influence of dissolved Si on Ni precipitate formation at the kaolinite water interface: Kinetics, DRS and EXAFS analysis. Chemosphere, 2017, 173, 135-142.	8.2	21
36	Solvent-free engineering of Fe0/Fe3C nanoparticles encased in nitrogen-doped carbon nanoshell materials for highly efficient removal of uranyl ions from acidic solution. Journal of Colloid and Interface Science, 2020, 575, 16-23.	9.4	21

Xuemei Ren

#	Article	IF	CITATIONS
37	Investigation of radionuclide 60Co(II) binding to TiO2 by batch technique, surface complexation model and DFT calculations. Science China Chemistry, 2012, 55, 1752-1759.	8.2	17
38	Colloidal Behaviors of Two-Dimensional Titanium Carbide in Natural Surface Waters: The Role of Solution Chemistry. Environmental Science & Technology, 2020, 54, 3353-3362.	10.0	17
39	Transformation details of poly(acrylonitrile) to poly(amidoxime) during the amidoximation process. RSC Advances, 2021, 11, 1909-1915.	3.6	17
40	Poly(amidoxime) functionalized MoS2 for efficient adsorption of uranium(VI) in aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319, 379-386.	1.5	16
41	Retention of Pb(II) by a Low-Cost Magnetic Composite Prepared by Environmentally-Friendly Plasma Technique. Separation Science and Technology, 2013, 48, 1211-1219.	2.5	14
42	Sequestration and speciation of Eu(<scp>iii</scp>) on gamma alumina: role of temperature and contact order. Environmental Sciences: Processes and Impacts, 2015, 17, 1904-1914.	3.5	14
43	Nanocomposites of polyaniline functionalized graphene oxide: synthesis and application as a novel platform for removal of Cd(II), Eu(III), Th(IV) and U(VI) in water. Journal of Radioanalytical and Nuclear Chemistry, 2018, 315, 509-522.	1.5	13
44	Influence of pH, soil humic acid, ionic strength and temperature on sorption of U(VI) onto attapulgite. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 981-991.	1.5	13
45	Insight into UV-induced simultaneous photocatalytic degradation of Ti3C2Tx MXene and reduction of U(VI). Journal of Hazardous Materials, 2022, 430, 128377.	12.4	13
46	A carboxymethyl cellulose modified magnetic bentonite composite for efficient enrichment of radionuclides. RSC Advances, 2016, 6, 65136-65145.	3.6	12
47	Characterization of Fe(III)-saturated montmorillonite and evaluation its sorption behavior for U(VI). Radiochimica Acta, 2016, 104, 481-490.	1.2	12
48	Macroscopic and microscopic insight into the mutual effects of europium(iii) and phosphate on their interaction with graphene oxide. RSC Advances, 2016, 6, 85046-85057.	3.6	10
49	Facile Synthesis and Characterization of Chrysotile Nanotubes and Their Application for Lead(II) Removal from Aqueous Solution. Separation Science and Technology, 2015, 50, 700-709.	2.5	5
50	Kinetic and thermodynamic studies on the interaction of europium(III) and phosphate with γ-Al2O3. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311, 395-408.	1.5	3
51	Corrigendum to: Effect of humic acid, fulvic acid, pH, ionic strength and temperature on ⁶³ Ni(II) sorption to MnO ₂ . Radiochimica Acta, 2020, 108, 591-591.	1.2	0