Karthikan Rajagopal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892412/publications.pdf

Version: 2024-02-01

840776 839539 2,271 18 11 18 citations g-index h-index papers 18 18 18 2610 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7791-7796.	7.1	604
2	Self-assembling peptides and proteins for nanotechnological applications. Current Opinion in Structural Biology, 2004, 14, 480-486.	5.7	435
3	Thermally Reversible Hydrogels via Intramolecular Folding and Consequent Self-Assembly of a de Novo Designed Peptide. Journal of the American Chemical Society, 2003, 125, 11802-11803.	13.7	433
4	Salt-Triggered Peptide Folding and Consequent Self-Assembly into Hydrogels with Tunable Modulus. Macromolecules, 2004, 37, 7331-7337.	4.8	382
5	Tuning the pH Responsiveness of \hat{I}^2 -Hairpin Peptide Folding, Self-Assembly, and Hydrogel Material Formation. Biomacromolecules, 2009, 10, 2619-2625.	5 . 4	161
6	Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. European Biophysics Journal, 2006, 35, 162-169.	2.2	79
7	Trehalose Limits BSA Aggregation in Spray-Dried Formulations at High Temperatures: Implications in Preparing Polymer Implants for Long-Term Protein Delivery. Journal of Pharmaceutical Sciences, 2013, 102, 2655-2666.	3.3	39
8	Bio-Orthogonal Cross-Linking Chemistry Enables <i>In Situ</i> Protein Encapsulation and Provides Sustained Release from Hyaluronic Acid Based Hydrogels. Molecular Pharmaceutics, 2017, 14, 1961-1968.	4.6	32
9	Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications. Journal of Pharmaceutical Sciences, 2015, 104, 3404-3417.	3.3	23
10	Characterization of Protein–Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy. Molecular Pharmaceutics, 2017, 14, 546-553.	4.6	12
11	Hyaluronic Acid–Antibody Fragment Bioconjugates for Extended Ocular Pharmacokinetics. Bioconjugate Chemistry, 2019, 30, 2782-2789.	3.6	12
12	In Situâ€Forming Glucoseâ€Responsive Hydrogel from Hyaluronic Acid Modified with a Boronic Acid Derivative. Macromolecular Chemistry and Physics, 2020, 221, 2000055.	2.2	12
13	Ectoine and Hydroxyectoine Stabilize Antibodies in Spray-Dried Formulations at Elevated Temperature and during a Freeze/Thaw Process. Molecular Pharmaceutics, 2020, 17, 3291-3297.	4.6	10
14	Trehalose Limits Fragment Antibody Aggregation and Influences Charge Variant Formation in Spray-Dried Formulations at Elevated Temperatures. Molecular Pharmaceutics, 2019, 16, 349-358.	4.6	9
15	In Situ Characterization of the Microstructural Evolution of Biopharmaceutical Solid-State Formulations with Implications for Protein Stability. Molecular Pharmaceutics, 2019, 16, 173-183.	4.6	8
16	Long-Term Stability of Anti-Vascular Endothelial Growth Factor (a-VEGF) Biologics Under Physiologically Relevant Conditions and Its Impact on the Development of Long-Acting Delivery Systems. Journal of Pharmaceutical Sciences, 2021, 110, 860-870.	3.3	8
17	Microstructure, Quality, and Release Performance Characterization of Long-Acting Polymer Implant Formulations with X-Ray Microscopy and Quantitative AI Analytics. Journal of Pharmaceutical Sciences, 2021, 110, 3418-3430.	3.3	8
18	Data-Driven Development of Predictive Models for Sustained Drug Release. Journal of Pharmaceutical Sciences, 2019, 108, 3582-3591.	3.3	4