Kevin M Flanigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/689111/publications.pdf

Version: 2024-02-01

28736 35168 11,370 156 57 102 citations g-index h-index papers 169 169 169 11337 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evidenceâ€based path to newborn screening for duchenne muscular dystrophy. Annals of Neurology, 2012, 71, 304-313.	2.8	633
2	Eteplirsen for the treatment of Duchenne muscular dystrophy. Annals of Neurology, 2013, 74, 637-647.	2.8	630
3	The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations. Human Mutation, 2015, 36, 395-402.	1.1	507
4	Distinctive patterns of microRNA expression in primary muscular disorders. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17016-17021.	3.3	458
5	A phase I/Iltrial of MYOâ€029 in adult subjects with muscular dystrophy. Annals of Neurology, 2008, 63, 561-571.	2.8	407
6	Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, The, 2017, 390, 1489-1498.	6.3	365
7	Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle and Nerve, 2014, 50, 477-487.	1.0	357
8	Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Human Mutation, 2009, 30, 1657-1666.	1.1	279
9	Spinocerebellar Ataxia Type 31 Is Associated with "Inserted―Penta-Nucleotide Repeats Containing (TGGAA)n. American Journal of Human Genetics, 2009, 85, 544-557.	2.6	260
10	Gentamicinâ€induced readthrough of stop codons in duchenne muscular dystrophy. Annals of Neurology, 2010, 67, 771-780.	2.8	238
11	Sequence specificity of aminoglycoside-induced stop codon readthrough: Potential implications for treatment of Duchenne muscular dystrophy. Annals of Neurology, 2000, 48, 164-169.	2.8	233
12	Duchenne and Becker Muscular Dystrophies. Neurologic Clinics, 2014, 32, 671-688.	0.8	227
13	Sustained alphaâ€sarcoglycan gene expression after gene transfer in limbâ€girdle muscular dystrophy, type 2D. Annals of Neurology, 2010, 68, 629-638.	2.8	214
14	<i><scp>LTBP4</scp></i> genotype predicts age of ambulatory loss in duchenne muscular dystrophy. Annals of Neurology, 2013, 73, 481-488.	2.8	202
15	Phase 2a Study of Ataluren-Mediated Dystrophin Production in Patients with Nonsense Mutation Duchenne Muscular Dystrophy. PLoS ONE, 2013, 8, e81302.	1.1	201
16	A Phase 1/2a Follistatin Gene Therapy Trial for Becker Muscular Dystrophy. Molecular Therapy, 2015, 23, 192-201.	3.7	193
17	Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Human Molecular Genetics, 2003, 12, 2895-2907.	1.4	191
18	Rapid Direct Sequence Analysis of the Dystrophin Gene. American Journal of Human Genetics, 2003, 72, 931-939.	2.6	178

#	Article	IF	CITATIONS
19	Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12485-12490.	3.3	166
20	Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology, 2005, 65, 197-204.	1.5	160
21	Muscle MRI in Ullrich congenital muscular dystrophy and Bethlem myopathy. Neuromuscular Disorders, 2005, 15, 303-310.	0.3	154
22	Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mammalian Genome, 2012, 23, 85-108.	1.0	140
23	Effects of Angiotensin-Converting Enzyme Inhibitors and/or Beta Blockers on the Cardiomyopathy in Duchenne Muscular Dystrophy. American Journal of Cardiology, 2012, 110, 98-102.	0.7	137
24	Analysis of Dystrophin Deletion Mutations Predicts Age of Cardiomyopathy Onset in Becker Muscular Dystrophy. Circulation: Cardiovascular Genetics, 2009, 2, 544-551.	5.1	136
25	Clinical and genetic characterization of manifesting carriers of DMD mutations. Neuromuscular Disorders, 2010, 20, 499-504.	0.3	136
26	Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. Journal of Clinical Investigation, 2008, 118, 904-12.	3.9	126
27	Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database. Journal of Neuromuscular Diseases, 2017, 4, 293-306.	1.1	125
28	Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nature Medicine, 2014, 20, 992-1000.	15.2	113
29	Congenital muscular dystrophy with rigid spine syndrome: A clinical, pathological, radiological, and genetic study. Annals of Neurology, 2000, 47, 152-161.	2.8	111
30	Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Annals of Neurology, 2004, 55, 422-426.	2.8	103
31	Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene. Human Mutation, 2011, 32, 299-308.	1.1	103
32	RNA Interference Inhibits DUX4-induced Muscle Toxicity In Vivo: Implications for a Targeted FSHD Therapy. Molecular Therapy, 2012, 20, 1417-1423.	3.7	101
33	Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscular Disorders, 2010, 20, 229-237.	0.3	100
34	<i>EPG5</i> -related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy. Brain, 2016, 139, 765-781.	3.7	99
35	Anti-Dystrophin T Cell Responses in Duchenne Muscular Dystrophy: Prevalence and a Glucocorticoid Treatment Effect. Human Gene Therapy, 2013, 24, 797-806.	1.4	97
36	<i>DMD</i> pseudoexon mutations: splicing efficiency, phenotype, and potential therapy. Annals of Neurology, 2008, 63, 81-89.	2.8	95

#	Article	IF	CITATIONS
37	The TREAT-NMD Duchenne Muscular Dystrophy Registries: Conception, Design, and Utilization by Industry and Academia. Human Mutation, 2013, 34, 1449-1457.	1.1	94
38	Genetic characterization of a large, historically significant Utah kindred with facioscapulohumeral dystrophy. Neuromuscular Disorders, 2001, 11, 525-529.	0.3	91
39	Mitochondrial fusion and function in Charcot–Marie–Tooth type 2A patient fibroblasts with mitofusin 2 mutations. Experimental Neurology, 2008, 211, 115-127.	2.0	88
40	Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1. Brain, 2009, 132, 452-464.	3.7	88
41	Dexmedetomidine and ketamine sedation for muscle biopsies in patients with <scp>D</scp> uchenne muscular dystrophy. Paediatric Anaesthesia, 2014, 24, 851-856.	0.6	88
42	Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene. Neuromuscular Disorders, 2008, 18, 453-459.	0.3	87
43	Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons. EMBO Journal, 2005, 24, 1596-1607.	3.5	84
44	Utility of cystatin C to monitor renal function in duchenne muscular dystrophy. Muscle and Nerve, 2009, 40, 438-442.	1.0	84
45	Follistatin Gene Therapy for Sporadic Inclusion Body Myositis Improves Functional Outcomes. Molecular Therapy, 2017, 25, 870-879.	3.7	84
46	Motor and cognitive assessment of infants and young boys with Duchenne Muscular Dystrophy: results from the Muscular Dystrophy Association DMD Clinical Research Network. Neuromuscular Disorders, 2013, 23, 529-539.	0.3	79
47	Position of Glycine Substitutions in the Triple Helix of <i>COL6A1 < /i>, <i>COL6A2 < /i>, and <i>COL6A3 < /i> i> is Correlated with Severity and Mode of Inheritance in Collagen VI Myopathies. Human Mutation, 2013, 34, 1558-1567.</i></i></i>	1.1	79
48	Feasibility and Safety of Systemic rAAV9-h <i>NAGLU</i> Delivery for Treating Mucopolysaccharidosis IIIB: Toxicology, Biodistribution, and Immunological Assessments in Primates. Human Gene Therapy Clinical Development, 2014, 25, 72-84.	3.2	79
49	Dystrophin quantification. Neurology, 2014, 83, 2062-2069.	1.5	73
50	The Muscular Dystrophies. Seminars in Neurology, 2012, 32, 255-263.	0.5	71
51	Genetics and Emerging Treatments for Duchenne and Becker Muscular Dystrophy. Pediatric Clinics of North America, 2015, 62, 723-742.	0.9	71
52	Association Study of Exon Variants in the NF-κB and TGFβ Pathways Identifies CD40 as a Modifier of Duchenne Muscular Dystrophy. American Journal of Human Genetics, 2016, 99, 1163-1171.	2.6	71
53	Update in Duchenne and Becker muscular dystrophy. Current Opinion in Neurology, 2019, 32, 722-727.	1.8	71
54	<i>DMD</i> exon 1 truncating point mutations: Amelioration of phenotype by alternative translation initiation in exon 6. Human Mutation, 2009, 30, 633-640.	1.1	66

#	Article	IF	Citations
55	A mutation in the <i>SEPN1 </i> selenocysteine redefinition element (SRE) reduces selenocysteine incorporation and leads to <i>SEPN1 </i> related myopathy. Human Mutation, 2009, 30, 411-416.	1.1	62
56	Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne muscular dystrophy: Results of a double-blind randomized clinical trial. Neuromuscular Disorders, 2014, 24, 16-24.	0.3	62
57	Outcome reliability in nonâ€Ambulatory Boys/Men with duchenne muscular dystrophy. Muscle and Nerve, 2015, 51, 522-532.	1.0	60
58	Developing standardized corticosteroid treatment for Duchenne muscular dystrophy. Contemporary Clinical Trials, 2017, 58, 34-39.	0.8	56
59	Longâ€range genomic regulators of <i>THBS1</i> and <i>LTBP4</i> modify disease severity in duchenne muscular dystrophy. Annals of Neurology, 2018, 84, 234-245.	2.8	53
60	DMD Trp3X nonsense mutation associated with a founder effect in North American families with mild Becker muscular dystrophy. Neuromuscular Disorders, 2009, 19, 743-748.	0.3	43
61	Cryptic MHC class I-binding peptides are revealed by aminoglycoside-induced stop codon read-through into the 3′ UTR. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5670-5675.	3.3	43
62	Effect of Different Corticosteroid Dosing Regimens on Clinical Outcomes in Boys With Duchenne Muscular Dystrophy. JAMA - Journal of the American Medical Association, 2022, 327, 1456.	3.8	43
63	A Randomized, Double-Blind Trial of Lisinopril and Losartan for the Treatment of Cardiomyopathy in Duchenne Muscular Dystrophy. PLOS Currents, 2013, 5, .	1.4	42
64	Meta-analyses of ataluren randomized controlled trials in nonsense mutation Duchenne muscular dystrophy. Journal of Comparative Effectiveness Research, 2020, 9, 973-984.	0.6	41
65	How a patient advocacy group developed the first proposed draft guidance document for industry for submission to the U.S. Food and Drug Administration. Orphanet Journal of Rare Diseases, 2015, 10, 82.	1.2	39
66	Clinical phenotypes as predictors of the outcome of skipping around <scp><i>DMD</i></scp> exon 45. Annals of Neurology, 2015, 77, 668-674.	2.8	38
67	Localization of the giant axonal neuropathy gene to chromosome 16q24. Annals of Neurology, 1998, 43, 143-148.	2.8	37
68	Targeted Exon Skipping to Correct Exon Duplications in the Dystrophin Gene. Molecular Therapy - Nucleic Acids, 2014, 3, e155.	2.3	37
69	One Year Outcome of Boys With Duchenne Muscular Dystrophy Using the Bayley-III Scales of Infant and Toddler Development. Pediatric Neurology, 2014, 50, 557-563.	1.0	36
70	Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy. Neuromuscular Disorders, 2014, 24, 431-435.	0.3	35
71	Abnormal expression of mu-crystallin in facioscapulohumeral muscular dystrophy. Experimental Neurology, 2007, 205, 583-586.	2.0	34
72	Identification of New Dystroglycan Complexes in Skeletal Muscle. PLoS ONE, 2013, 8, e73224.	1.1	34

#	Article	IF	Citations
73	Twiceâ€weekly glucocorticosteroids in infants and young boys with Duchenne muscular dystrophy. Muscle and Nerve, 2019, 59, 650-657.	1.0	32
74	Differential Prevalence of Antibodies Against Adeno-Associated Virus in Healthy Children and Patients with Mucopolysaccharidosis III: Perspective for AAV-Mediated Gene Therapy. Human Gene Therapy Clinical Development, 2017, 28, 187-196.	3.2	31
75	204th ENMC International Workshop on Biomarkers in Duchenne Muscular Dystrophy 24–26 January 2014, Naarden, The Netherlands. Neuromuscular Disorders, 2015, 25, 184-198.	0.3	30
76	Prenatal diagnosis of Ullrich congenital muscular dystrophy using haplotype analysis and collagen VI immunocytochemistry. Prenatal Diagnosis, 2004, 24, 440-444.	1.1	29
77	Clinical trial readiness in non-ambulatory boys and men with duchenne muscular dystrophy: MDA-DMD network follow-up. Muscle and Nerve, 2016, 54, 681-689.	1.0	29
78	Impaired regeneration in calpain-3 null muscle is associated with perturbations in mTORC1 signaling and defective mitochondrial biogenesis. Skeletal Muscle, 2017, 7, 27.	1.9	29
79	Lack of Toxicity in Nonhuman Primates Receiving Clinically Relevant Doses of an AAV9.U7snRNA Vector Designed to Induce <i>DMD</i> Exon 2 Skipping. Human Gene Therapy, 2021, 32, 882-894.	1.4	29
80	Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells. Skeletal Muscle, 2015, 5, 40.	1.9	28
81	Placeboâ€controlled Phase 2 Trial of Drisapersen for Duchenne Muscular Dystrophy. Annals of Clinical and Translational Neurology, 2018, 5, 913-926.	1.7	28
82	Diagnostic Utility of Whole Exome Sequencing in the Neuromuscular Clinic. Neuropediatrics, 2019, 50, 096-102.	0.3	28
83	Variants in MED12L, encoding a subunit of the mediator kinase module, are responsible for intellectual disability associated with transcriptional defect. Genetics in Medicine, 2019, 21, 2713-2722.	1.1	28
84	The first exon duplication mouse model of Duchenne muscular dystrophy: A tool for therapeutic development. Neuromuscular Disorders, 2015, 25, 827-834.	0.3	27
85	Comparison of Serum rAAV Serotype-Specific Antibodies in Patients with Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, Inclusion Body Myositis, or GNE Myopathy. Human Gene Therapy, 2017, 28, 737-746.	1.4	27
86	Efficient Skipping of Single Exon Duplications in DMD Patient-Derived Cell Lines Using an Antisense Oligonucleotide Approach. Journal of Neuromuscular Diseases, 2017, 4, 199-207.	1.1	27
87	Low-level dystrophin expression attenuating the dystrophinopathy phenotype. Neuromuscular Disorders, 2018, 28, 116-121.	0.3	27
88	Update in the Mucopolysaccharidoses. Seminars in Pediatric Neurology, 2021, 37, 100874.	1.0	27
89	A checklist for clinical trials in rare disease: obstacles and anticipatory actions—lessons learned from the FOR-DMD trial. Trials, 2018, 19, 291.	0.7	26
90	Sarcolemmal reorganization in facioscapulohumeral muscular dystrophy. Annals of Neurology, 2006, 59, 289-297.	2.8	25

#	Article	IF	Citations
91	Knee extensor strength exhibits potential to predict function in sporadic inclusionâ€body myositis. Muscle and Nerve, 2012, 45, 163-168.	1.0	25
92	Proof of Concept of the Ability of the Kinect to Quantify Upper Extremity Function in Dystrophinopathy. PLOS Currents, 2013, 5, .	1.4	25
93	The ZZ Domain of Dystrophin in DMD: Making Sense of Missense Mutations. Human Mutation, 2014, 35, 257-264.	1.1	23
94	AGE-RELATED BIOLOGY AND DISEASES OF MUSCLE AND NERVE. Neurologic Clinics, 1998, 16, 659-669.	0.8	22
95	The TREAT-NMD advisory committee for therapeutics (TACT): an innovative de-risking model to foster orphan drug development. Orphanet Journal of Rare Diseases, 2015, 10, 49.	1.2	21
96	Pre-clinical dose-escalation studies establish a therapeutic range for U7snRNA-mediated DMD exon 2 skipping. Molecular Therapy - Methods and Clinical Development, 2021, 21, 325-340.	1.8	21
97	A Practical Approach to Molecular Diagnostic Testing in Neuromuscular Diseases. Physical Medicine and Rehabilitation Clinics of North America, 2012, 23, 589-608.	0.7	19
98	A Comparative Study of N-glycolylneuraminic Acid (Neu5Gc) and Cytotoxic T Cell (CT) Carbohydrate Expression in Normal and Dystrophin-Deficient Dog and Human Skeletal Muscle. PLoS ONE, 2014, 9, e88226.	1.1	19
99	Recurrent central nervous system white matter changes in charcot–Marie–Tooth type X disease. Muscle and Nerve, 2014, 49, 451-454.	1.0	19
100	A GLP-Compliant Toxicology and Biodistribution Study: Systemic Delivery of an rAAV9 Vector for the Treatment of Mucopolysaccharidosis IIIB. Human Gene Therapy Clinical Development, 2015, 26, 228-242.	3.2	19
101	Clinical Phenotypes of DMD Exon 51 Skip Equivalent Deletions: A Systematic Review. Journal of Neuromuscular Diseases, 2020, 7, 217-229.	1.1	18
102	The Genotypic and Phenotypic Spectrum of <i>BICD2</i> Variants in Spinal Muscular Atrophy. Annals of Neurology, 2020, 87, 487-496.	2.8	18
103	Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27. Journal of Human Genetics, 2015, 60, 151-155.	1.1	17
104	Correlation of knee strength to functional outcomes in becker muscular dystrophy. Muscle and Nerve, 2013, 47, 550-554.	1.0	16
105	The 100-meter timed test: Normative data in healthy males and comparative pilot outcome data for use in Duchenne muscular dystrophy clinical trials. Neuromuscular Disorders, 2017, 27, 452-457.	0.3	16
106	Intron mutations and early transcription termination in Duchenne and Becker muscular dystrophy. Human Mutation, 2022, 43, 511-528.	1.1	16
107	Cerebral proton magnetic resonance spectroscopy of a patient with giant axonal neuropathy. Brain and Development, 2003, 25, 45-50.	0.6	15
108	Dystrophin as a therapeutic biomarker: Are we ignoring data from the past?. Neuromuscular Disorders, 2014, 24, 463-466.	0.3	15

#	Article	IF	CITATIONS
109	Reliability and validity of activeâ€seated: An outcome in dystrophinopathy. Muscle and Nerve, 2015, 52, 356-362.	1.0	15
110	Truncating variants in <i>UBAP1</i> associated with childhoodâ€onset nonsyndromic hereditary spastic paraplegia. Human Mutation, 2020, 41, 632-640.	1.1	15
111	A novel form of juvenile recessive ALS maps to loci on 6p25 and 21q22. Neuromuscular Disorders, 2009, 19, 279-287.	0.3	14
112	In-frame de novo mutation in <i>BICD2</i> in two patients with muscular atrophy and arthrogryposis. Journal of Physical Education and Sports Management, 2018, 4, a003160.	0.5	14
113	An Isolated Limb Infusion Method Allows for Broad Distribution of rAAVrh74.MCK.GALGT2 to Leg Skeletal Muscles in the Rhesus Macaque. Molecular Therapy - Methods and Clinical Development, 2018, 10, 89-104.	1.8	14
114	Natural History of Steroid-Treated Young Boys With Duchenne Muscular Dystrophy Using the NSAA, 100m, and Timed Functional Tests. Pediatric Neurology, 2020, 113, 15-20.	1.0	14
115	Evaluation of biomarkers for Sanfilippo syndrome. Molecular Genetics and Metabolism, 2019, 128, 68-74.	0.5	13
116	Cardiac Management in Neuromuscular Diseases. Physical Medicine and Rehabilitation Clinics of North America, 2012, 23, 855-868.	0.7	12
117	Modeling functional decline over time in sporadic inclusion body myositis. Muscle and Nerve, 2017, 55, 526-531.	1.0	12
118	X-linked muscular dystrophy in a Labrador Retriever strain: phenotypic and molecular characterisation. Skeletal Muscle, 2020, 10, 23.	1.9	12
119	Becker muscular dystrophy due to an inversion of exons 23 and 24 of the <i>DMD</i> gene. Muscle and Nerve, 2011, 44, 822-825.	1.0	11
120	Natural history of echocardiographic abnormalities in mucopolysaccharidosis III. Molecular Genetics and Metabolism, 2018, 124, 131-134.	0.5	11
121	N-terminal α Dystroglycan (αDG-N): AÂPotential Serum Biomarker for Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2016, 3, 247-260.	1.1	10
122	General anesthesia with a native airway for patients with mucopolysaccharidosis type <scp>III</scp> . Paediatric Anaesthesia, 2017, 27, 370-376.	0.6	9
123	Lowâ€level expression of EPG5 leads to an attenuated Vici syndrome phenotype. American Journal of Medical Genetics, Part A, 2018, 176, 1207-1211.	0.7	9
124	Automated immunofluorescence analysis for sensitive and precise dystrophin quantification in muscle biopsies. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	9
125	Camptocormia as a late presentation in a manifesting carrier of duchenne muscular dystrophy. Muscle and Nerve, 2013, 47, 124-127.	1.0	8
126	Absence of Significant Off-Target Splicing Variation with a U7snRNA Vector Targeting <i>DMD</i> Exon 2 Duplications. Human Gene Therapy, 2021, 32, 1346-1359.	1.4	8

#	Article	IF	Citations
127	Gene editing and modulation for Duchenne muscular dystrophy. Progress in Molecular Biology and Translational Science, 2021, 182, 225-255.	0.9	7
128	Precordial R Wave Height Does Not Correlate with Echocardiographic Findings in Boys with Duchenne Muscular Dystrophy. Congenital Heart Disease, 2013, 8, 561-567.	0.0	6
129	ClinicopathologicÂConference: A Newborn With Hypotonia, Cleft Palate, Micrognathia, and Bilateral Club Feet. Pediatric Neurology, 2017, 74, 11-14.	1.0	6
130	Evaluating longitudinal therapy effects via the North Star Ambulatory Assessment. Muscle and Nerve, 2021, 64, 614-619.	1.0	6
131	Meta-analyses of deflazacort versus prednisone/prednisolone in patients with nonsense mutation Duchenne muscular dystrophy. Journal of Comparative Effectiveness Research, 2021, 10, 1337-1347.	0.6	6
132	Phenotypic Spectrum of Dystrophinopathy Due to Duchenne Muscular Dystrophy Exon 2 Duplications. Neurology, 2022, 98, .	1.5	6
133	McArdle's disease presenting as recurrent cryptogenic renal failure due to occult seizures. Muscle and Nerve, 2003, 28, 640-643.	1.0	5
134	Visual Diagnosis: Chest Pain in a Boy With Duchenne Muscular Dystrophy and Cardiomyopathy. Pediatrics in Review, 2014, 35, e64-e67.	0.2	5
135	Homozygous variants in <i>AMPD2</i> and <i>COL11A1</i> lead to a complex phenotype of pontocerebellar hypoplasia type 9 and Stickler syndrome type 2. American Journal of Medical Genetics, Part A, 2020, 182, 557-560.	0.7	5
136	Validity and Reliability of the Neuromuscular Gross Motor Outcome. Pediatric Neurology, 2021, 122, 21-26.	1.0	5
137	Recurrent Fat Embolic Strokes in a Patient With Duchenne Muscular Dystrophy With Long Bone Fractures and a Patent Foramen Ovale. Pediatric Neurology, 2016, 63, 76-79.	1.0	4
138	Young Becker Muscular Dystrophy Patients Demonstrate Fibrosis Associated With Abnormal Left Ventricular Ejection Fraction on Cardiac Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2019, 12, e008919.	1.3	4
139	Health related quality of life in young, steroid-na $ ilde{A}$ ve boys with Duchenne muscular dystrophy. Neuromuscular Disorders, 2021, 31, 1161-1168.	0.3	4
140	Sequence specificity of aminoglycoside-induced stop codon readthrough: Potential implications for treatment of Duchenne muscular dystrophy., 2000, 48, 164.		4
141	Aminoglycosides and other nonsense suppression therapies for the treatment of dystrophinopathy. The Cochrane Library, 0, , .	1.5	2
142	Reassessing carrier status for dystrophinopathies. Neurology: Genetics, 2016, 2, e108.	0.9	2
143	Longitudinal MRI brain volume changes over one year in children with mucopolysaccharidosis types IIIA and IIIB. Molecular Genetics and Metabolism, 2021, 133, 193-200.	0.5	2
144	An unusual pathologic feature associated with dermatomyositis. Neuromuscular Disorders, 2006, 16, 391-393.	0.3	1

9

#	Article	IF	CITATIONS
145	Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2. Neuromuscular Disorders, 2013, 23, 192.	0.3	1
146	Duchenne muscular dystrophy: meeting the therapeutic challenge. Lancet Neurology, The, 2016, 15, 785-787.	4.9	1
147	Response to Letter by Yilmaz et al Regarding Article, "Analysis of Dystrophin Deletion Mutations Predicts Age of Cardiomyopathy Onset in Becker Muscular Dystrophy― Circulation: Cardiovascular Genetics, 2010, 3, .	5.1	0
148	Diabetic Myonecrosis in a Cystic Fibrosis Patient. Respiratory Care, 2013, 58, e123-e125.	0.8	0
149	Sanfilippo syndrome registry project and natural history studies: an example of patients, parents and researchers collaborating for a cure. Orphanet Journal of Rare Diseases, 2014, 9, P7.	1.2	0
150	Differential prevalence of antibodies against adeno-associated virus in healthy children and patients with mucopolysaccharidosis III: perspective for AAV-mediated gene therapy. Human Gene Therapy Clinical Development, 2017, , .	3.2	0
151	Duchenne and Becker Muscular Dystrophies. , 2017, , 1106-1111.		0
152	Direct Reprogramming of Human Fibroblasts into Myoblasts to Investigate Therapies for Neuromuscular Disorders. Journal of Visualized Experiments, 2021, , .	0.2	0
153	Alternate Translational Initiation of Dystrophin: A Novel Therapeutic Approach., 2019,, 371-382.		0
154	Chest Pain in a Boy With Duchenne Muscular Dystrophy and Cardiomyopathy (Visual Diagnosis). , 2016, , 53-58.		0
155	Visual Diagnosis: Chest Pain in a Boy With Duchenne Muscular Dystrophy and Cardiomyopathy. Pediatrics in Review, 2014, 35, e64-e67.	0.2	0
156	Letter by Duan et al Regarding Article, "Therapeutic Exon Skipping Through a CRISPR-Guided Cytidine Deaminase Rescues Dystrophic Cardiomyopathy In Vivo― Circulation, 2022, 145, e872-e873.	1.6	0