
Daniel Aslanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6890574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comment on â€~The challenge in restoring magma-rich rifted margins: The example of the Mozambique-Antarctica conjugate margins' by Tomasi S. et al Gondwana Research, 2022, 103, 401-403.	6.0	3
2	Structural and sedimentary origin of the Gargano - Pelagosa gateway and impact on sedimentary evolution during the Messinian Salinity Crisis. Earth-Science Reviews, 2022, 232, 104114.	9.1	4
3	Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. Journal of Biogeography, 2021, 48, 492-510.	3.0	31
4	Deep Structure of the North Natal Valley (Mozambique) Using Combined Wideâ€Angle and Reflection Seismic Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021171.	3.4	13
5	Seismic evidence for crustal architecture and stratigraphy of the Limpopo Corridor: New insights into the evolution of the sheared margin offshore southern Mozambique. Marine Geology, 2021, 435, 106468.	2.1	9
6	Crustal structure of the East African Limpopo margin, a strike-slip rifted corridor along the continental Mozambique Coastal Plain and North Natal Valley. Solid Earth, 2021, 12, 1865-1897.	2.8	9
7	Deep structure of the ParÃį-Maranhão/Barreirinhas passive margin in the equatorial Atlantic (NE) Tj ETQq1 1 0.7	784314 rg 1.4	BT /Overlock
8	Salt morphologies and crustal segmentation relationship: New insights from the Western Mediterranean Sea. Earth-Science Reviews, 2021, 222, 103818.	9.1	6
9	Imaging Early Oceanic Crust spreading in the Equatorial Atlantic Ocean: Insights from the MACIC wide-angle experiment. Journal of South American Earth Sciences, 2021, 111, 103493.	1.4	6
10	The Limpopo Magmaâ€Rich Transform Margin, South Mozambique: 1. Insights From Deepâ€Structure Seismic Imaging. Tectonics, 2021, 40, e2021TC006915.	2.8	10
11	Gondwana breakup: Messages from the North Natal Valley. Terra Nova, 2020, 32, 205-214.	2.1	27
12	Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean. Climate of the Past, 2020, 16, 1263-1283.	3.4	13
13	The Messinian Ebro River incision. Global and Planetary Change, 2019, 181, 102988.	3.5	15
14	Major modification of sediment routing by a large Mass Transport Deposit in the Gulf of Lions (Western Mediterranean). Marine Geology, 2019, 411, 1-20.	2.1	14
15	New starting point for the Indian Ocean: Second phase of breakup for Gondwana. Earth-Science Reviews, 2019, 191, 26-56.	9.1	64
16	From Rifting to Spreading: The Proto-Oceanic Crust. Advances in Science, Technology and Innovation, 2019, , 329-331.	0.4	1
17	Passive Margin and Continental Basin: Towards a New Paradigm. Advances in Science, Technology and Innovation, 2019, , 333-336.	0.4	1
18	Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil. Journal of South American Earth Sciences, 2018, 84, 351-372.	1.4	21

DANIEL ASLANIAN

#	Article	IF	CITATIONS
19	The late Messinian event: A worldwide tectonic revolution. Terra Nova, 2018, 30, 207-214.	2.1	15
20	Lithospheric structuration onshore-offshore of the Sergipe-Alagoas passive margin, NE Brazil, based on wide-angle seismic data. Journal of South American Earth Sciences, 2018, 88, 649-672.	1.4	14
21	Highâ€resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6ÂMa: relation with climate and tectonics. Basin Research, 2017, 29, 305-339.	2.7	19
22	The Apennine foredeep (Italy) during the latest Messinian: Lago Mare reflects competing brackish and marine conditions based on calcareous nannofossils and dinoflagellate cysts. Geobios, 2017, 50, 237-257.	1.4	20
23	Young Marquesas volcanism finally located. Lithos, 2017, 294-295, 356-361.	1.4	5
24	The Minorca Basin: a buffer zone between the Valencia and Liguroâ€Provençal Basins (<scp>NW</scp>) Tj ETQ	<u>}</u> q0_0 0 rgI 2.1	BT /Overlock I
25	Monte Carlo approach to assess the uncertainty of wide-angle layered models: Application to the Santos Basin, Brazil. Tectonophysics, 2016, 683, 286-307.	2.2	26
26	Multi-approach quantification of denudation rates in the Gulf of Lion source-to-sink system (SE) Tj ETQq0 0 0 rg	BT /Overlo 4.4	ck 10 Tf 50 4
27	Slope morphologies offshore Dakhla (SW Moroccan margin). Bulletin - Societie Geologique De France, 2016, 187, 27-39.	2.2	3
28	Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data. Tectonophysics, 2016, 674, 227-252.	2.2	30
29	Structure of the Central Atlantic Conjugate Passive Margins and their Associated Sedimentary Basins. , 2016, , .		0
30	Post-rift evolution of the Gulf of Lion margin tested by stratigraphic modelling. Bulletin - Societie Geologique De France, 2015, 186, 291-308.	2.2	8
31	Deep structure of the Santos Basinâ€5£o Paulo Plateau System, SE Brazil. Journal of Geophysical Research: Solid Earth, 2015, 120, 5401-5431.	3.4	71
32	Deep crustal structure of the North-West African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey). Tectonophysics, 2015, 656, 154-174.	2.2	25
33	Messinian evaporite deposition during sea level rise in the Gulf of Lions (Western Mediterranean). Marine and Petroleum Geology, 2015, 66, 262-277.	3.3	42
34	Mesozoic and Early Cenozoic sediment influx and morphology of the Mozambique Basin. Marine and Petroleum Geology, 2015, 66, 890-905.	3.3	29
35	Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – II. Sardinia's margin. Bulletin - Societie Geologique De France, 2015, 186, 331-351.	2.2	31
36	Probing connections between deep earth and surface processes in a land-locked ocean basin transformed into a giant saline basin: The Mediterranean GOLD project#. Marine and Petroleum Geology, 2015, 66, 6-17.	3.3	4

DANIEL ASLANIAN

#	Article	IF	CITATIONS
37	Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – I. Gulf of Lion's margin. Bulletin - Societie Geologique De France, 2015, 186, 309-330.	2.2	39
38	Sedimentary markers in the Provençal Basin (western Mediterranean): a window into deep geodynamic processes. Terra Nova, 2015, 27, 122-129.	2.1	17
39	Imaging proto-oceanic crust off the Brazilian Continental Margin. Geophysical Journal International, 2014, 200, 471-488.	2.4	40
40	Stratigraphic simulations of the shelf of the Gulf of Lions: testing subsidence rates and seaâ€level curves during the Pliocene and Quaternary. Terra Nova, 2014, 26, 230-238.	2.1	30
41	Quantifying subsidence and isostatic readjustment using sedimentary paleomarkers, example from the Gulf of Lion. Earth and Planetary Science Letters, 2014, 388, 353-366.	4.4	42
42	Palaeogeographic consequences of conservational models in the South Atlantic Ocean. Geological Society Special Publication, 2013, 369, 75-90.	1.3	27
43	Kinematic keys of the Santos–Namibe basins. Geological Society Special Publication, 2013, 369, 91-107.	1.3	38
44	The crustal structure of the Central Mozambique continental margin — Wide-angle seismic, gravity and magnetic study in the Mozambique Channel, Eastern Africa. Tectonophysics, 2013, 599, 170-196.	2.2	55
45	Paleogeographic evolution of the central segment of the South Atlantic during Early Cretaceous times: Paleotopographic and geodynamic implications. Tectonophysics, 2013, 604, 191-223.	2.2	108
46	Structure and evolution of the Gulf of Lions: The Sardinia seismic experiment and the GOLD (Gulf of) Tj ETQq0 0	0 rgBT /Ov 0.7	verlock 10 Tf 12
47	A twoâ€step process for the reflooding of the <scp>M</scp> editerranean after the <scp>M</scp> essinian <scp>S</scp> alinity <scp>C</scp> risis. Basin Research, 2012, 24, 125-153.	2.7	134
48	The Cenozoic tectonostratigraphic evolution of the Barracuda Ridge and Tiburon Rise, at the western end of the North America–South America plate boundary zone. Marine Geology, 2012, 303-306, 154-171.	2.1	24
49	The Catalan margin during the Messinian Salinity Crisis: Physiography, morphology and sedimentary record. Marine Geology, 2011, 284, 158-174.	2.1	34
50	A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 2010, 98, 1-37.	9.1	415
51	Comment on â€~A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin' by Trond H. Torsvik, Sonia Rousse, Cinthia Labails and Mark A. Smethurst. Geophysical Journal International, 2010, 183, 20-28.	2.4	22
52	Evolution of rifted continental margins: The case of the Gulf of Lions (Western Mediterranean Basin). Earth and Planetary Science Letters, 2010, 292, 345-356.	4.4	85
53	An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 2010, 297, 355-368.	4.4	239
54	Messinian erosional and salinity crises: View from the Provence Basin (Gulf of Lions, Western) Tj ETQq0 0 0 rgBT	Oyerlock	10 Tf 50 62

4

#	Article	IF	CITATIONS
55	Crustal structure of a young margin pair: New results across the Liguro–Provencal Basin from wide-angle seismic tomography. Earth and Planetary Science Letters, 2009, 286, 333-345.	4.4	58

$_{56}$ Crustal structure of the SW-Moroccan margin from wide-angle and reflection seismic data (the) Tj ETQq0 0 0 rgBT $_{2.2}^{10}$ Verlock $_{57}^{10}$ Tf 50 70

57	Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics, 2009, 468, 98-112.	2.2	184
58	Brazilian and Angolan Passive Margins: the kinematic constraints. , 2007, , .		0
59	Corrigendum to: Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000Âyears) [Earth Planet. Sci. Lett. 252 (2006), 119–137]. Earth and Planetary Science Letters, 2007, 254, 446-447.	4.4	4
60	Using Sedimentary Markers to Evaluate Subsidence Rates: A Case study in the Gulf of Lion. , 2007, , .		0
61	A New Starting point for the history of South and Equatorial Atlantic Oceans. , 2007, , .		1
62	Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000Âyr). Earth and Planetary Science Letters, 2006, 252, 119-137.	4.4	211
63	Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaÃ ⁻ Ango project). Geophysical Journal International, 2005, 162, 793-810.	2.4	170
64	PLACA: a white box for plate reconstruction and best-fit pole determination. Computers and Geosciences, 2005, 31, 437-452.	4.2	23
65	Sedimentary sequences in the Gulf of Lion: A record of 100,000 years climatic cycles. Marine and Petroleum Geology, 2005, 22, 775-804.	3.3	162
66	Axial incision: The key to understand submarine canyon evolution (in the western Gulf of Lion). Marine and Petroleum Geology, 2005, 22, 805-826.	3.3	131
67	Deep structure of the West African continental margin (Congo, ZaÃ ⁻ re, Angola), between 5°S and 8°S, from reflection/refraction seismics and gravity data. Geophysical Journal International, 2004, 158, 529-553.	2.4	162
68	Un nouveau point de départ pour l'histoire de l'Atlantique central. Comptes Rendus - Geoscience, 2004, 336, 1041-1052.	1.2	161
69	Analysis of propagators along the Pacific–Antarctic Ridge: evidence for triggering by kinematic changes. Earth and Planetary Science Letters, 2002, 199, 415-428.	4.4	19
70	Deep crustal structure of the Tuamotu plateau and Tahiti (French Polynesia) based on seismic refraction data. Geophysical Research Letters, 2002, 29, 1-1-1-4.	4.0	25
71	Deep-penetration heat flow probes raise questions about interpretations from shorter probes. Eos, 2001, 82, 317-317.	0.1	12
72	Variations in axial morphology, segmentation, and seafloor roughness along the Pacific-Antarctic Ridge between 56°S and 66°S. Journal of Geophysical Research, 2001, 106, 8521-8546.	3.3	15

DANIEL ASLANIAN

#	Article	IF	CITATIONS
73	Chemical systematics of an intermediate spreading ridge: The Pacific-Antarctic Ridge between 56°S and 66°S. Journal of Geophysical Research, 2000, 105, 2915-2936.	3.3	26
74	Large-scale chemical and thermal division of the Pacific mantle. Nature, 1999, 399, 345-350.	27.8	62
75	The "lost inca plateau― cause of flat subduction beneath peru?. Earth and Planetary Science Letters, 1999, 171, 335-341.	4.4	175
76	Location of Louisville hotspot and origin of Hollister Ridge: geophysical constraints. Earth and Planetary Science Letters, 1998, 164, 31-40.	4.4	24
77	Evolution of the Pacific-Antarctic Ridge South of the Udintsev Fracture Zone. Science, 1997, 278, 1281-1284.	12.6	36
78	Morphological reorganization within the Pacific-Antarctic Discordance. Earth and Planetary Science Letters, 1996, 137, 157-173.	4.4	15
79	Asymmetry of the mantle structure beneath the Midâ€Atlantic Ridge. Geophysical Research Letters, 1992, 19, 1165-1168.	4.0	4