Chencheng Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6889971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An enhanced recovery after surgery pathway: LOS reduction, rapid discharge and minimal complications after anterior cervical spine surgery. BMC Musculoskeletal Disorders, 2022, 23, 252.	1.9	11
2	A positive feedback loop between EZH2 and NOX4 regulates nucleus pulposus cell senescence in age-related intervertebral disc degeneration. Cell Division, 2020, 15, 2.	2.4	18
3	Molecular basis of degenerative spinal disorders from a proteomic perspective (Review). Molecular Medicine Reports, 2020, 21, 9-19.	2.4	9
4	Cartilage intermediate layer protein affects the progression of intervertebral disc degeneration by regulating the extracellular microenvironment (Review). International Journal of Molecular Medicine, 2020, 47, 475-484.	4.0	13
5	Establishment and Implementation of an Enhanced Recovery After Surgery (ERAS) Pathway Tailored for Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery. World Neurosurgery, 2019, 129, e317-e323.	1.3	58
6	Comparison of Endoscope-Assisted and Microscope-Assisted Tubular Surgery for Lumbar Laminectomies and Discectomies: Minimum 2-Year Follow-Up Results. BioMed Research International, 2019, 2019, 1-7.	1.9	6
7	Epidemiologic Features of Traumatic Fractures in Children and Adolescents: A 9-Year Retrospective Study. BioMed Research International, 2019, 2019, 1-8.	1.9	13
8	Autophagy protects nucleus pulposus cells from cyclic mechanical tension‑induced apoptosis. International Journal of Molecular Medicine, 2019, 44, 750-758.	4.0	8
9	Intermittent cyclic mechanical tension altered the microRNA expression profile of human cartilage endplate chondrocytes. Molecular Medicine Reports, 2018, 17, 5238-5246.	2.4	12
10	Cyclic mechanical tension reinforces DNA damage and activates the p53-p21-Rb pathway to induce premature senescence of nucleus pulposus cells. International Journal of Molecular Medicine, 2018, 41, 3316-3326.	4.0	25
11	Transcriptome and alternative splicing analysis of nucleus pulposus cells in response to high oxygen tension: Involvement of high oxygen tension in the pathogenesis of intervertebral disc degeneration. International Journal of Molecular Medicine, 2018, 41, 3422-3432.	4.0	9
12	The matrikine N-acetylated proline-glycine-proline induces premature senescence of nucleus pulposus cells via CXCR1-dependent ROS accumulation and DNA damage and reinforces the destructive effect of these cells on homeostasis of intervertebral discs. Biochimica Et Biophysica Acta - Molecular Basis of Disease 2017 1863 220-230	3.8	25
13	Collagen-derived N-acetylated proline-glycine-proline upregulates the expression of pro-inflammatory cytokines and extracellular matrix proteases in nucleus pulposus cells via the NF-κB and MAPK signaling pathways. International Journal of Molecular Medicine, 2017, 40, 164-174.	4.0	14
14	Oxygen-Sensing Nox4 Generates Genotoxic ROS to Induce Premature Senescence of Nucleus Pulposus Cells through MAPK and NF- <i>κ</i> B Pathways. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-15.	4.0	47
15	ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	4.0	244
16	Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle, 2016, 15, 1674-1684.	2.6	202
17	Collagen-Derived <i>N</i> -Acetylated Proline-Glycine-Proline in Intervertebral Discs Modulates CXCR1/2 Expression and Activation in Cartilage Endplate Stem Cells to Induce Migration and Differentiation Toward a Pro-Inflammatory Phenotype. Stem Cells, 2015, 33, 3558-3568.	3.2	23
18	Growth and Differentiation Factor-5 Contributes to the Structural and Functional Maintenance of the Intervertebral Disc. Cellular Physiology and Biochemistry, 2015, 35, 1-16.	1.6	69