
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6889764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allelopathy of Aquatic Autotrophs. Critical Reviews in Plant Sciences, 2003, 22, 313-339.	5.7	528
2	Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes?. Basic and Applied Ecology, 2008, 9, 422-432.	2.7	282
3	The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems, 2003, 13, 507-549.	2.0	266
4	Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry, 1996, 41, 133-138.	2.9	238
5	Restoration of submerged vegetation in shallow eutrophic lakes – A guideline and state of the art in Germany. Limnologica, 2006, 36, 155-171.	1.5	233
6	The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography, 2005, 50, 2008-2021.	3.1	179
7	Polyphenolic Allelochemicals from the Aquatic Angiosperm Myriophyllum spicatumInhibit Photosystem II. Plant Physiology, 2002, 130, 2011-2018.	4.8	165
8	Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany, 2006, 85, 203-211.	1.6	157
9	Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia, 2003, 506-509, 583-589.	2.0	127
10	FISCHERELLIN, A NEW ALLELOCHEMICAL FROM THE FRESHWATER CYANOBACTERIUM FISCHERELLA MUSCICOLA1. Journal of Phycology, 1991, 27, 686-692.	2.3	121
11	Searching for allelopathic effects of submerged macrophytes on phytoplankton—state of the art and open questions. Hydrobiologia, 2007, 584, 77-88.	2.0	121
12	Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiology, 2008, 8, 58.	3.3	107
13	Plants in aquatic ecosystems: current trends and future directions. Hydrobiologia, 2018, 812, 1-11.	2.0	94
14	Subfossil Cladocera in relation to contemporary environmental variables in 54 Panâ€European lakes. Freshwater Biology, 2009, 54, 2401-2417.	2.4	92
15	Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia, 2001, 127, 105-114.	2.0	91
16	Isolation, identification and determination of the absolute configuration of Fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret). Tetrahedron Letters, 1997, 38, 379-382.	1.4	78
17	IN SITU ALLELOPATHIC POTENTIAL OF MYRIOPHYLLUM VERTICILLATUM (HALORAGACEAE) AGAINST SELECTED PHYTOPLANKTON SPECIES 1. Journal of Phycology, 2006, 42, 1189-1198.	2.3	75
18	Allelopathic activity of Stratiotes aloides on phytoplankton—towards identification of allelopathic substances. Hydrobiologia, 2007, 584, 89-100.	2.0	75

2

#	Article	IF	CITATIONS
19	Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. Journal of Chemical Ecology, 2002, 28, 2245-2256.	1.8	70
20	Seasonal and interannual dynamics of polyphenols in Myriophyllum verticillatum and their allelopathic activity on Anabaena variabilis. Aquatic Botany, 2009, 91, 110-116.	1.6	66
21	Community composition of bacterial biofilms on two submerged macrophytes and an artificial substrate in a pre-alpine lake. Aquatic Microbial Ecology, 2009, 58, 79-94.	1.8	53
22	Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe. Hydrobiologia, 2003, 506-509, 51-58.	2.0	52
23	Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogen. Oikos, 2003, 103, 497-504.	2.7	52
24	Assessment of baseline ecotoxicity of sediments from a prospective mining area enriched in light rare earth elements. Science of the Total Environment, 2018, 612, 831-839.	8.0	52
25	Comments on increasing number and abundance of non-indigenous aquatic macrophyte species in Germany. Weed Research, 2010, 50, 519-526.	1.7	51
26	Release from competition and protection determine the outcome of plant interactions along a grazing gradient. Oikos, 2012, 121, 95-101.	2.7	51
27	Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Oecologia, 2014, 175, 173-185.	2.0	43
28	Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia, 2003, 506-509, 559-565.	2.0	41
29	Chemical Defense in Elodea nuttallii Reduces Feeding and Growth of Aquatic Herbivorous Lepidoptera. Journal of Chemical Ecology, 2007, 33, 1646-1661.	1.8	40
30	Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Scientific Reports, 2019, 9, 18458.	3.3	37
31	Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella. Journal of Chemical Ecology, 2002, 28, 2045-2056.	1.8	36
32	Chara can outcompete Myriophyllum under low phosphorus supply. Aquatic Sciences, 2013, 75, 457-467.	1.5	36
33	Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: Potential effects on the fate of ingested tannins. Journal of Insect Physiology, 2008, 54, 462-471.	2.0	33
34	The distribution of chydorids (Branchiopoda, Anomopoda) in European shallow lakes and its application to ecological quality monitoring. Archiv Für Hydrobiologie, 2003, 156, 181-202.	1.1	32
35	Assessing ecological quality of shallow lakes: Does knowledge of transparency suffice?. Basic and Applied Ecology, 2009, 10, 89-96.	2.7	31
36	Sexual dimorphism and light/dark adaptation in the compound eyes of male and female Acentria ephemerella (Lepidoptera: Pyraloidea: Crambidae). European Journal of Entomology, 2007, 104, 459-470.	1.2	30

#	Article	IF	CITATIONS
37	Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia, 2016, 778, 209-220.	2.0	27
38	A Pharm-Ecological Perspective of Terrestrial and Aquatic Plant-Herbivore Interactions. Journal of Chemical Ecology, 2013, 39, 465-480.	1.8	26
39	Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition. Science of the Total Environment, 2015, 537, 213-224.	8.0	26
40	Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and nonâ€native plants. Oikos, 2017, 126, 1770-1779.	2.7	26
41	Title is missing!. Aquatic Ecology, 1997, 31, 273-282.	1.5	25
42	Chemical profile of the North American native Myriophyllum sibiricum compared to the invasive M. spicatum. Aquatic Botany, 2008, 88, 57-65.	1.6	25
43	Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides?. Aquatic Toxicology, 2016, 177, 355-364.	4.0	21
44	Epiphytic Diatoms along Environmental Gradients in Western European Shallow Lakes. Clean - Soil, Air, Water, 2014, 42, 229-235.	1.1	20
45	Identification of new hardy ferns that preferentially accumulate light rare earth elements: a conserved trait within fern species. Environmental Chemistry, 2020, 17, 191.	1.5	20
46	Disentangling the direct and indirect effects of agricultural runoff on freshwater ecosystems subject to global warming: A microcosm study. Water Research, 2021, 190, 116713.	11.3	20
47	Degradation of gallic acid and hydrolysable polyphenols is constitutively activated in the freshwater plant-associated bacterium Matsuebacter sp. FB25. Aquatic Microbial Ecology, 2007, 47, 83-90.	1.8	18
48	Periphyton density is similar on native and nonâ€native plant species. Freshwater Biology, 2017, 62, 906-915.	2.4	17
49	Does intraspecific variability matter in ecological risk assessment? Investigation of genotypic variations in three macrophyte species exposed to copper. Aquatic Toxicology, 2019, 211, 29-37.	4.0	17
50	On the move: New insights on the ecology and management of native and alien macrophytes. Aquatic Botany, 2020, 162, 103190.	1.6	16
51	Large-scale geographical and environmental drivers of shallow lake diatom metacommunities across Europe. Science of the Total Environment, 2020, 707, 135887.	8.0	14
52	Ecology and Environmental Impact of Myriophyllum heterophyllum, an Aggressive Invader in European Waterways. Diversity, 2020, 12, 127.	1.7	10
53	Allelochemical interactions among aquatic primary producers. , 2012, , 196-209.		10
54	Sucrose modifies growth and physiology in axenically grownMyriophyllum spicatumwith potential effects on the response to pollutants. Environmental Toxicology and Chemistry, 2017, 36, 969-975.	4.3	8

#	Article	IF	CITATIONS
55	Sensitive response of sediment-grown Myriophyllum spicatum L. to arsenic pollution under different CO2 availability. Hydrobiologia, 2018, 812, 177-191.	2.0	8
56	Global Deletome Profile of Saccharomyces cerevisiae Exposed to the Technology-Critical Element Yttrium. Frontiers in Microbiology, 2018, 9, 2005.	3.5	8
57	Hygraula nitens, the only native aquatic caterpillar in New Zealand, prefers feeding on an alien submerged plant. Hydrobiologia, 2018, 812, 13-25.	2.0	7
58	Genotypes of the aquatic plant Myriophyllum spicatum with different growth strategies show contrasting sensitivities to copper contamination. Chemosphere, 2020, 245, 125552.	8.2	7
59	Limited effect of gizzard sand on consumption of the macrophyte Myriophyllum spicatum by the great pond snail Lymnaea stagnalis. Hydrobiologia, 2018, 812, 131-145.	2.0	6
60	Life History and Developmental Performance of the Eurasian Milfoil Weevil, Eubrychius velutus (Coleoptera: Curculionidae). The Coleopterists Bulletin, 2006, 60, 170-176.	0.2	5
61	Aquatic chemical ecology meets ecotoxicology. Aquatic Ecology, 0, , 1.	1.5	5
62	Evaluating Multiple Stressor Effects on Benthic–Pelagic Freshwater Communities in Systems of Different Complexities: Challenges in Upscaling. Water (Switzerland), 2022, 14, 581.	2.7	3
63	Small-scale variation in sexual size dimorphism and sex ratio in the aquatic moth <i>Acentria ephemerella</i> Denis and Schiffermüller, 1775 (Lepidoptera: Crambidae). Aquatic Insects, 2014, 36, 187-199.	0.9	2
64	Aquatic botany since 1975: Have our views changed?. Aquatic Botany, 2016, 135, 1-2.	1.6	2
65	Chemical Ecology and Ecotoxicology. , 2019, , 1-31.		Ο