
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6889658/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME Journal, 2012, 6, 610-618.	9.8	4,581
2	A new view of the tree of life. Nature Microbiology, 2016, 1, 16048.	13.3	1,823
3	Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science, 2010, 330, 204-208.	12.6	1,109
4	Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications, 2016, 7, 13219.	12.8	994
5	Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 2018, 3, 836-843.	13.3	906
6	New CRISPR–Cas systems from uncultivated microbes. Nature, 2017, 542, 237-241.	27.8	471
7	Clades of huge phages from across Earth's ecosystems. Nature, 2020, 578, 425-431.	27.8	331
8	Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nature Reviews Microbiology, 2018, 16, 629-645.	28.6	314
9	Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nature Microbiology, 2018, 3, 328-336.	13.3	227
10	Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nature Communications, 2016, 7, 10613.	12.8	224
11	Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO ₂ concentrations. Environmental Microbiology, 2017, 19, 459-474.	3.8	212
12	Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome, 2018, 6, 102.	11.1	181
13	Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome, 2015, 3, 50.	11.1	175
14	Transitory microbial habitat in the hyperarid Atacama Desert. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2670-2675.	7.1	172
15	Archaea on Human Skin. PLoS ONE, 2013, 8, e65388.	2.5	166
16	Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Research, 2018, 28, 569-580.	5.5	163
17	Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome, 2018, 6, 122.	11.1	156
18	Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME Journal, 2017, 11, 1915-1929.	9.8	137

#	Article	IF	CITATIONS
19	New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME Journal, 2013, 7, 312-324.	9.8	126
20	Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ, 2016, 4, e2687.	2.0	124
21	Simulation of <i>Deepwater Horizon</i> oil plume reveals substrate specialization within a complex community of hydrocarbon degraders. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7432-7437.	7.1	120
22	Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nature Communications, 2014, 5, 5497.	12.8	119
23	Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994.	13.3	115
24	Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants. PLoS ONE, 2016, 11, e0154131.	2.5	86
25	Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1031-1037.	1.7	81
26	Human age and skin physiology shape diversity and abundance of Archaea on skin. Scientific Reports, 2017, 7, 4039.	3.3	78
27	Validation of a Nylon-Flocked-Swab Protocol for Efficient Recovery of Bacterial Spores from Smooth and Rough Surfaces. Applied and Environmental Microbiology, 2010, 76, 5148-5158.	3.1	76
28	Microbial Community Structure and the Persistence of Cyanobacterial Populations in Salt Crusts of the Hyperarid Atacama Desert from Genome-Resolved Metagenomics. Frontiers in Microbiology, 2017, 8, 1435.	3.5	73
29	Groundwater cable bacteria conserve energy by sulfur disproportionation. ISME Journal, 2020, 14, 623-634.	9.8	64
30	Impacts of microbial assemblage and environmental conditions on the distribution of anatoxin-a producing cyanobacteria within a river network. ISME Journal, 2019, 13, 1618-1634.	9.8	60
31	Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm. ISME Journal, 2013, 7, 635-651.	9.8	57
32	Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum. PeerJ, 2016, 4, e1607.	2.0	57
33	A viability-linked metagenomic analysis of cleanroom environments: eukarya, prokaryotes, and viruses. Microbiome, 2015, 3, 62.	11.1	56
34	Cleanroom Maintenance Significantly Reduces Abundance but Not Diversity of Indoor Microbiomes. PLoS ONE, 2015, 10, e0134848.	2.5	56
35	Quo vadis? Microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments. Scientific Reports, 2015, 5, 9156.	3.3	52
36	Diversity of Anaerobic Microbes in Spacecraft Assembly Clean Rooms. Applied and Environmental Microbiology, 2010, 76, 2837-2845.	3.1	50

#	Article	IF	CITATIONS
37	Urban Dust Microbiome: Impact on Later Atopy and Wheezing. Environmental Health Perspectives, 2016, 124, 1919-1923.	6.0	41
38	"Altiarchaeales― Uncultivated Archaea from the Subsurface. Life, 2015, 5, 1381-1395.	2.4	40
39	The Mode of Cell Wall Growth in Selected Archaea Is Similar to the General Mode of Cell Wall Growth in Bacteria as Revealed by Fluorescent Dye Analysis. Applied and Environmental Microbiology, 2011, 77, 1556-1562.	3.1	39
40	An archaeal symbiont-host association from the deep terrestrial subsurface. ISME Journal, 2019, 13, 2135-2139.	9.8	39
41	Virus-associated organosulfur metabolism in human and environmental systems. Cell Reports, 2021, 36, 109471.	6.4	38
42	The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. Environmental Microbiomes, 2021, 16, 24.	5.0	36
43	Metagenomic and lipid analyses reveal a diel cycle in a hypersaline microbial ecosystem. ISME Journal, 2015, 9, 2697-2711.	9.8	35
44	Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture. Biodegradation, 2018, 29, 23-39.	3.0	35
45	New Perspectives on Microbial Community Distortion after Whole-Genome Amplification. PLoS ONE, 2015, 10, e0124158.	2.5	35
46	Stable-Isotope-Informed, Genome-Resolved Metagenomics Uncovers Potential Cross-Kingdom Interactions in Rhizosphere Soil. MSphere, 2021, 6, e0008521.	2.9	34
47	Recovery ofBacillusSpore Contaminants from Rough Surfaces: a Challenge to Space Mission Cleanliness Control. Applied and Environmental Microbiology, 2011, 77, 1628-1637.	3.1	33
48	Microaerobic conditions caused the overwhelming dominance of Acinetobacter spp. and the marginalization of Rhodococcus spp. in diesel fuel/crude oil mixture-amended enrichment cultures. Archives of Microbiology, 2020, 202, 329-342.	2.2	33
49	S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence. Frontiers in Microbiology, 2015, 6, 543.	3.5	31
50	Microbial succession in an inflated lunar/Mars analog habitat during a 30-day human occupation. Microbiome, 2016, 4, 22.	11.1	31
51	Genomeâ€inferred spatioâ€temporal resolution of an uncultivated Roizmanbacterium reveals its ecological preferences in groundwater. Environmental Microbiology, 2020, 22, 726-737.	3.8	31
52	Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria. ISME Journal, 2020, 14, 1547-1560.	9.8	29
53	Coupling Genetic and Chemical Microbiome Profiling Reveals Heterogeneity of Archaeome and Bacteriome in Subsurface Biofilms That Are Dominated by the Same Archaeal Species. PLoS ONE, 2014, 9, e99801.	2.5	28
54	Lytic archaeal viruses infect abundant primary producers in Earth's crust. Nature Communications, 2021, 12, 4642.	12.8	28

#	Article	IF	CITATIONS
55	Carbon fixation rates in groundwater similar to those in oligotrophic marine systems. Nature Geoscience, 2022, 15, 561-567.	12.9	28
56	Comparison of Innovative Molecular Approaches and Standard Spore Assays for Assessment of Surface Cleanliness. Applied and Environmental Microbiology, 2011, 77, 5438-5444.	3.1	27
57	Diverse Viruses Carrying Genes for Microbial Extremotolerance in the Atacama Desert Hyperarid Soil. MSystems, 2021, 6, .	3.8	27
58	Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon, and its biofilm. Frontiers in Microbiology, 2014, 5, 397.	3.5	26
59	Lessons Learned from the Microbial Analysis of the Herschel Spacecraft during Assembly, Integration, and Test Operations. Astrobiology, 2013, 13, 1125-1139.	3.0	25
60	Culture Independent Genomic Comparisons Reveal Environmental Adaptations for Altiarchaeales. Frontiers in Microbiology, 2016, 7, 1221.	3.5	25
61	Homologous Recombination and Transposon Propagation Shape the Population Structure of an Organism from the Deep Subsurface with Minimal Metabolism. Genome Biology and Evolution, 2018, 10, 1115-1119.	2.5	24
62	Saccharibacteria as Organic Carbon Sinks in Hydrocarbon-Fueled Communities. Frontiers in Microbiology, 2020, 11, 587782.	3.5	22
63	Microbial Hotspots in Lithic Microhabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert. Microorganisms, 2021, 9, 1038.	3.6	19
64	Leave no stone unturned: individually adapted xerotolerant Thaumarchaeota sheltered below the boulders of the Atacama Desert hyperarid core. Microbiome, 2021, 9, 234.	11.1	18
65	An <i>in vitro</i> culture model to study the dynamics of colonic microbiota in Syrian golden hamsters and their susceptibility to infection with <i>Clostridium difficile</i> . ISME Journal, 2015, 9, 321-332.	9.8	17
66	Microbial Community Structures of Novel Icelandic Hot Spring Systems Revealed by PhyloChip G3 Analysis. Astrobiology, 2014, 14, 229-240.	3.0	16
67	Detecting inactivated endospores in fluorescence microscopy using propidium monoazide. International Journal of Astrobiology, 2012, 11, 117-123.	1.6	15
68	Potential of Variovorax paradoxus isolate BFB1_13 for bioremediation of BTEX contaminated sites. AMB Express, 2021, 11, 126.	3.0	15
69	Assessment of UV-C-induced water disinfection by differential PCR-based quantification of bacterial DNA damage. Journal of Microbiological Methods, 2018, 149, 89-95.	1.6	13
70	Ammonium Removal in Aquaponics Indicates Participation of Comammox Nitrospira. Current Microbiology, 2021, 78, 894-903.	2.2	12
71	Positive, Neutral and Negative Interactions in Cocultures between <i>Pyrococcus furiosus</i> and Different Methanogenic <i>Archaea</i> . Microbiology Insights, 2012, 5, MBI.S8516.	2.0	11
72	Effects of a longâ€ŧerm anoxic warming scenario on microbial community structure and functional potential of permafrostâ€affected soil. Permafrost and Periglacial Processes, 2021, 32, 641-656.	3.4	11

#	Article	IF	CITATIONS
73	Genetic diversity in terrestrial subsurface ecosystems impacted by geological degassing. Nature Communications, 2022, 13, 284.	12.8	11
74	Imaging Techniques for Detecting Prokaryotic Viruses in Environmental Samples. Viruses, 2021, 13, 2126.	3.3	10
75	Overlooked Diversity of Ultramicrobacterial Minorities at the Air-Sea Interface. Atmosphere, 2020, 11, 1214.	2.3	9
76	Host-Associated Phages Disperse across the Extraterrestrial Analogue Antarctica. Applied and Environmental Microbiology, 2022, 88, e0031522.	3.1	7
77	Are we There Yet? Understanding Interplanetary Microbial Hitchhikers using Molecular Methods. Current Issues in Molecular Biology, 2020, 38, 33-52.	2.4	6
78	Quantification of Encapsulated Bioburden in Spacecraft Polymer Materials by Cultivation-Dependent and Molecular Methods. PLoS ONE, 2014, 9, e94265.	2.5	4
79	Label-Free Raman Microspectroscopy for Identifying Prokaryotic Virocells. MSystems, 2022, 7, e0150521.	3.8	3
80	Plume Layer Influences the Amazon Reef Sponge Microbiome Primary Producers. Frontiers in Marine Science, 2022, 9, .	2.5	3
81	Agl24 is an ancient archaeal homolog of the eukaryotic N-glycan chitobiose synthesis enzymes. ELife, 2022, 11, .	6.0	2
82	Reply to Delmont and Eren: Strain variants and population structure during the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8950-E8952.	7.1	0
83	Erratum for Monsees et al., "Label-Free Raman Microspectroscopy for Identifying Prokaryotic	3.8	Ο