Mohamed Kheireddine Aroua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6887672/publications.pdf

Version: 2024-02-01

252 papers

16,715 citations

18465 62 h-index 121 g-index

254 all docs

254 docs citations

254 times ranked

16283 citing authors

#	Article	IF	CITATIONS
1	Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb(II) ion: An updated review. Chemosphere, 2022, 287, 132250.	4.2	22
2	Prediction of B20 Storage Tank Precipitate Removal Based on Biodiesel Monoglyceride Content. ChemEngineering, 2022, 6, 7.	1.0	0
3	Activated carbon-based electrodes for two-steps catalytic/ electrocatalytic reduction of glycerol in Amberlyst-15 mediator. Chemosphere, 2022, , 133949.	4.2	3
4	Glycerol Electrocatalytic Reduction Using an Activated Carbon Composite Electrode: Understanding the Reaction Mechanisms and an Optimization Study. Frontiers in Chemistry, 2022, 10, 845614.	1.8	2
5	Physicochemical and oxidative stability of indigenous traditional tengkawang butter as potential cocoa butter equivalent (CBE). International Journal of Food Properties, 2022, 25, 780-791.	1.3	3
6	A Systematic Review of Amino Acid-Based Adsorbents for CO2 Capture. Energies, 2022, 15, 3753.	1.6	11
7	A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation. Reviews in Chemical Engineering, 2021, 37, 779-811.	2.3	28
8	Structure–selectivity relationship of a zirconia-based heterogeneous acid catalyst in the production of green mono- and dioleate product. Clean Technologies and Environmental Policy, 2021, 23, 19-29.	2.1	4
9	The effects of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [emim] [NTf ₂] IL: acetone compositions on the amount, homogeneity and chemical stability of immobilized IL in hollow fiber-supported ionic liquid membranes (SILMs). Chemical Engineering Communications, 2021, 208, 925-936.	1.5	1
10	Harvesting Electricity from CO2 Emission: Opportunities, Challenges and Future Prospects. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1061-1081.	2.7	3
11	Oxidative hydrothermal surface modification of activated carbon for sevoflurane removal. Chemosphere, 2021, 264, 128535.	4.2	10
12	Process optimization and kinetics of microwave assisted transesterification of crude glycerol for the production of glycerol carbonate. Sustainable Energy and Fuels, 2021, 5, 274-282.	2.5	12
13	Mechanistic insights into carbon dioxide utilization by superoxide ion generated electrochemically in ionic liquid electrolyte. Physical Chemistry Chemical Physics, 2021, 23, 1114-1126.	1.3	7
14	High Yield Super-Hydrophobic Carbon Nanomaterials Using Cobalt/Iron Co-Catalyst Impregnated on Powder Activated Carbon. Processes, 2021, 9, 134.	1.3	2
15	Kinetic parameters for glycerol electrooxidation over nitrogen- and fluorine-doped composite carbon: Dynamic electrochemical impedance spectroscopy analysis based. Journal of Electroanalytical Chemistry, 2021, 883, 115043.	1.9	4
16	The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. Journal of CO2 Utilization, 2021, 48, 101526.	3.3	41
17	Thanaka (H. crenulata, N. crenulata, L. acidissima L.): A Systematic Review of Its Chemical, Biological Properties and Cosmeceutical Applications. Cosmetics, 2021, 8, 68.	1.5	6
18	Adsorption of CO2 on palm shell based activated carbon modified by deep eutectic solvent: Breakthrough adsorption study. Journal of Environmental Chemical Engineering, 2021, 9, 105333.	3.3	36

#	Article	IF	Citations
19	Hybridized Fe/Ru-SiMWCNT-ionic liquid nanofluid for CO2 conversion into carbamate using superoxide ion. Journal of Environmental Chemical Engineering, 2021, 9, 105285.	3.3	8
20	Statistical Optimization and Kinetic Modeling of Lipase-Catalyzed Synthesis of Diacylglycerol in the Mixed Solvent System of Acetone/ <i>tert</i> -Butanol. Industrial & Diacylglycerol in the Research, 2021, 60, 14026-14037.	1.8	2
21	Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts, 2021, 11, 1121.	1.6	53
22	Mass transfer coefficients of carbon dioxide in aqueous blends of monoethanolamine and glycerol using wetted-wall column. Journal of Environmental Chemical Engineering, 2021, 9, 106618.	3.3	9
23	Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review. Energies, 2021, 14, 8421.	1.6	33
24	Enhancement of ionic mass transfer coefficient using a unique electrocoagulation reactor with rotating impeller anode. Separation Science and Technology, 2020, 55, 1167-1176.	1.3	5
25	Production of palm-based glycol ester over solid acid catalysed esterification of lauric acid via microwave heating. Chemical Engineering Journal, 2020, 382, 122975.	6.6	9
26	Supported ionic liquid membranes (SILMs) as a contactor for selective absorption of CO2/O2 by aqueous monoethanolamine (MEA). Separation and Purification Technology, 2020, 230, 115849.	3.9	23
27	Breakthrough analysis of continuous fixed-bed adsorption of sevoflurane using activated carbons. Chemosphere, 2020, 239, 124839.	4.2	41
28	Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018). Journal of Cleaner Production, 2020, 253, 119707.	4.6	97
29	Investigating the electrocatalytic oxidation of glycerol on simultaneous nitrogen- and fluorine-doped on activated carbon black composite. Diamond and Related Materials, 2020, 101, 107626.	1.8	9
30	A review of recent developments on kinetics parameters for glycerol electrochemical conversion – A by-product of biodiesel. Science of the Total Environment, 2020, 705, 135137.	3.9	57
31	Tailoring of activated carbon with ammonia for enhanced anaesthetic sevoflurane adsorption. Separation and Purification Technology, 2020, 251, 117404.	3.9	0
32	Preparation and characterization of electrode from annealed nano-diamond particles with boric acid for anodic oxidation process. Electrochimica Acta, 2020, 362, 137221.	2.6	9
33	Enrichment of surface oxygen functionalities on activated carbon for adsorptive removal of sevoflurane. Chemosphere, 2020, 260, 127496.	4.2	15
34	Authors' response to comments on Ang etÂal. "Breakthrough analysis of continuous fixed-bed adsorption of sevoflurane using activated carbonsâ€. Chemosphere, 2020, 247, 126389.	4.2	2
35	Experimental Densities of Binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or sulfolane with monoethanolamine and their molecular interaction by COSMO-RS. IOP Conference Series: Materials Science and Engineering, 2020, 778, 012022.	0.3	0
36	Bimetallic Mo–Fe Co-Catalyst-Based Nano-Carbon Impregnated on PAC for Optimum Super-Hydrophobicity. Symmetry, 2020, 12, 1242.	1.1	2

#	Article	IF	CITATIONS
37	Catalyst Characteristics and Performance of Silica-Supported Zinc for Hydrodeoxygenation of Phenol. Energies, 2020, 13, 2802.	1.6	3
38	Effect of Reaction Medium Mixture on the Lipase Catalyzed Synthesis of Diacylglycerol. Industrial & Engineering Chemistry Research, 2020, 59, 9869-9881.	1.8	10
39	CO ₂ Absorption/Desorption in Aqueous Single and Novel Hybrid Solvents of Glycerol and Monoethanolamine in a Pilot-Scale Packed Bed Column. Energy & Energy & 2020, 34, 8503-8515.	2.5	8
40	Editorial: From Glycerol to Value-Added Products. Frontiers in Chemistry, 2020, 8, 69.	1.8	16
41	Gas-phase hydrodeoxygenation of phenol over Zn/SiO2 catalysts: Effects of zinc load, temperature, weight hourly space velocity, and H2 volumetric flow rate. Biomass and Bioenergy, 2020, 138, 105556.	2.9	12
42	A review on activated carbon adsorption for volatile organic compounds (VOCs). Reviews in Chemical Engineering, 2019, 35, 649-668.	2.3	90
43	Recent development in the electrochemical conversion of carbon dioxide: Short review. AIP Conference Proceedings, 2019, , .	0.3	8
44	Combined solar electrocoagulation and adsorption processes for Pb(II) removal from aqueous solution. Chemical Engineering and Processing: Process Intensification, 2019, 143, 107619.	1.8	22
45	In Situ Electrosynthesis of Peroxydicarbonate Anion in Ionic Liquid Media Using Carbon Dioxide/Superoxide System. ACS Applied Materials & Emp; Interfaces, 2019, 11, 25928-25939.	4.0	12
46	Enhancing the Anti-biofouling Properties of Polyethersulfone Membrane Using Chitosan-Powder Activated Carbon Composite. Journal of Polymers and the Environment, 2019, 27, 2156-2166.	2.4	6
47	Low-cost, biodegradable and highly effective adsorbents for batch and column fixed bed adsorption processes of methylene blue. Journal of Environmental Chemical Engineering, 2019, 7, 103409.	3.3	56
48	Starch as novel water soluble biopolymer in removal mixtures heavy metal ions via polymer enhanced ultrafiltration. AIP Conference Proceedings, 2019, , .	0.3	5
49	Raw landfill leachate treatment using an electrocoagulation process with a novel rotating electrode reactor. Water Science and Technology, 2019, 80, 458-465.	1.2	21
50	Temperatureâ€programmed reduction of silver(I) oxide using a titaniaâ€supported silver catalyst under a H 2 atmosphere. Journal of the Chinese Chemical Society, 2019, 66, 1443-1455.	0.8	7
51	Selective Electrochemical Conversion of Glycerol to Glycolic Acid and Lactic Acid on a Mixed Carbon-Black Activated Carbon Electrode in a Single Compartment Electrochemical Cell. Frontiers in Chemistry, 2019, 7, 110.	1.8	15
52	Esterification of Glycerol With Oleic Acid Over Hydrophobic Zirconia-Silica Acid Catalyst and Commercial Acid Catalyst: Optimization and Influence of Catalyst Acidity. Frontiers in Chemistry, 2019, 7, 205.	1.8	30
53	Atmospheric hydrodeoxygenation of phenol as pyrolyticâ€oil model compound for hydrocarbon production using Ag/TiO ₂ catalyst. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2293.	0.8	12
54	Solubility of CO2 in aqueous 2‑amino‑1, 3‑propanediol (Serinol) at elevated pressures. Journal of Molecular Liquids, 2019, 277, 207-216.	2.3	2

#	Article	IF	Citations
55	Synergistic interaction of metal–acid sites for phenol hydrodeoxygenation over bifunctional Ag/TiO2 nanocatalyst. Chinese Journal of Chemical Engineering, 2019, 27, 349-361.	1.7	22
56	Mechanism of bacterial adhesion on ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) and combination with activated carbon (PAC). Reviews in Chemical Engineering, 2019, 35, 421-443.	2.3	26
57	Selection of Tubular Membrane Separation based on the Resistance Performance., 2019,,.		O
58	Advanced process control for ultrafiltration membrane water treatment system. Journal of Cleaner Production, 2018, 179, 63-80.	4.6	42
59	Electrochemical reduction of bicarbonate on carbon nanotube-supported silver oxide: An electrochemical impedance spectroscopy study. Journal of Environmental Chemical Engineering, 2018, 6, 1033-1043.	3.3	8
60	Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: A review. Journal of Analytical and Applied Pyrolysis, 2018, 133, 117-127.	2.6	62
61	Optimization study on preparation of amine functionalized sea mango (cerbera odollam) activated carbon for Carbon Dioxide (CO2) adsorption. Combustion Science and Technology, 2018, 190, 1259-1282.	1.2	13
62	Improvement of product selectivity in bicarbonate reduction into formic acid on a tin-based catalyst by integrating nano-diamond particles. Chemical Engineering Research and Design, 2018, 116, 494-505.	2.7	5
63	Solar photovoltaic applications: opportunities and challenges. Reviews in Chemical Engineering, 2018, 34, 503-528.	2.3	16
64	Prediction of CO ₂ /O ₂ absorption selectivity using supported ionic liquid membranes (SILMs) for gas–liquid membrane contactor. Chemical Engineering Communications, 2018, 205, 295-310.	1.5	10
65	Modification of polyethylene glycol with choline chloride and evaluation of the CO ₂ absorption capacity of their aqueous solutions., 2018, 8, 324-334.		8
66	A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Reviews in Chemical Engineering, 2018, 34, 855-873.	2.3	58
67	Solubility of CO 2 in aqueous solutions of glycerol and monoethanolamine. Journal of Molecular Liquids, 2018, 249, 40-52.	2.3	41
68	Treatment of Textile Wastewater Using a Novel Electrocoagulation Reactor Design., 2018,,.		2
69	Electrochemical bicarbonate reduction in the presence of Diisopropylamine on sliver oxide in alkaline sodium bicarbonate medium. Journal of Environmental Chemical Engineering, 2018, 6, 6335-6343.	3.3	2
70	Development of diamond composite electrode for anodic oxidation of organic pollutants. Journal of Environmental Chemical Engineering, 2018, 6, 3884-3888.	3.3	7
71	Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process. IOP Conference Series: Materials Science and Engineering, 2018, 334, 012074.	0.3	7
72	Development of a Novel Hydrophobic ZrO ₂ â€"SiO ₂ Based Acid Catalyst for Catalytic Esterification of Glycerol with Oleic Acid. Industrial & Description of Chemistry Research, 2018, 57, 9386-9399.	1.8	31

#	Article	IF	Citations
73	Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. IOP Conference Series: Materials Science and Engineering, 2018, 334, 012001.	0.3	83
74	Delayed volatiles release phenomenon at higher temperature in TGA via sample encapsulation technique. Fuel, 2018, 234, 422-429.	3.4	10
75	Effect of carbon source on acclimatization of nitrifying bacteria to achieve high-rate partial nitrification of wastewater with high ammonium concentration. Applied Water Science, 2017, 7, 165-173.	2.8	13
76	The application of iron mesh double layer as anode for the electrochemical treatment of Reactive Black 5 dye. Journal of Environmental Sciences, 2017, 54, 184-195.	3.2	34
77	Removal of lead by solar-photovoltaic electrocoagulation using novel perforated zinc electrode. Journal of Cleaner Production, 2017, 147, 206-216.	4.6	63
78	Effect of Adsorption and Passivation Phenomena on the Electrochemical Oxidation of Phenol and 2-Chlorophenol at Carbon Black Diamond Composite Electrode. Industrial & Engineering Chemistry Research, 2017, 56, 1652-1660.	1.8	21
79	A review of ionic liquids as catalysts for transesterification reactions of biodiesel and glycerol carbonate production. Catalysis Reviews - Science and Engineering, 2017, 59, 44-93.	5.7	64
80	A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds. Applied Catalysis A: General, 2017, 541, 87-106.	2.2	115
81	Optimization of transesterification of palm-based methyl palmitate and triethanolamine towards maximum di-esteramine content. Biocatalysis and Agricultural Biotechnology, 2017, 10, 352-359.	1.5	4
82	Carbon dioxide adsorption on nitrogen-enriched gel beads from calcined eggshell/sodium alginate natural composite. Chemical Engineering Research and Design, 2017, 109, 387-399.	2.7	23
83	A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering, 2017, 33, .	2.3	117
84	Microstructures, interactions and dynamics properties studies of aqueous guanidinium triflate ionic liquid from molecular dynamics simulations. Journal of Molecular Liquids, 2017, 227, 184-193.	2.3	5
85	Optimisation of Reactive Black 5 dye removal by electrocoagulation process using response surface methodology. Water Science and Technology, 2017, 75, 952-962.	1.2	27
86	Recent trends in removal and recovery of heavy metals from wastewater by electrochemical technologies. Reviews in Chemical Engineering, 2017, 33, .	2.3	59
87	Electrochemical Properties and Electrode Reversibility Studies of Palm Shell Activated Carbon for Heavy Metal Removal. Electrochimica Acta, 2017, 249, 96-103.	2.6	8
88	A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds. Journal of Industrial and Engineering Chemistry, 2017, 56, 1-34.	2.9	132
89	Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Conversion and Management, 2017, 148, 925-934.	4.4	162
90	Effect of varying the amount of binder on the electrochemical characteristics of palm shell activated carbon. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012011.	0.3	3

#	Article	IF	CITATIONS
91	Polymeric ionic liquids (PILs) for CO ₂ capture. Reviews in Chemical Engineering, 2017, 33, 183-200.	2.3	24
92	A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant. Journal of Industrial and Engineering Chemistry, 2017, 45, 145-155.	2.9	52
93	A low sludge generated anode by hybrid solar electrocoagulation for the removal of lead. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012013.	0.3	0
94	Selective Electroreduction of Glycerol to 1,2-Propanediol on a Mixed Carbon-Black Activated Carbon Electrode and a Mixed Carbon Black-Diamond Electrode. BioResources, 2017, 13, .	0.5	1
95	Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO ₂ for humic acid adsorption. International Journal of Nanomedicine, 2016, Volume 11, 3969-3978.	3.3	9
96	Correlation and measurement of density and viscosity of aqueous mixtures of glycerol and N-methyldiethanolamine, monoethanolamine, piperazine and ionic liquid. Journal of Molecular Liquids, 2016, 221, 1155-1161.	2.3	19
97	Production of glycerol carbonate from glycerol with aid of ionic liquid as catalyst. Chemical Engineering Journal, 2016, 297, 128-138.	6.6	72
98	Preparation of activated carbon using sea mango (<i>Cerbera odollam</i>) with microwave-assisted technique for the removal of methyl orange from textile wastewater. Desalination and Water Treatment, 2016, 57, 29143-29152.	1.0	12
99	A review of the enzymatic hydroesterification process for biodiesel production. Renewable and Sustainable Energy Reviews, 2016, 61, 245-257.	8.2	108
100	Evaluation of 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide–Alkanolamine Sulfolane-Based System as Solvent for Absorption of Carbon Dioxide. Industrial & Dioxide Engineering Chemistry Research, 2016, 55, 7992-8001.	1.8	26
101	Production and applications of electric-arc-furnace slag as solid waste in environmental technologies: a review. Environmental Technology Reviews, 2016, 5, 1-11.	2.1	29
102	Enhanced microwave catalytic-esterification of industrial grade glycerol over BrÃ,nsted-based methane sulfonic acid in production of biolubricant. Chemical Engineering Research and Design, 2016, 104, 323-333.	2.7	15
103	Simulation of Aqueous Blend of Monoethanolamine and Glycerol for Carbon Dioxide Capture from Flue Gas. Energy &	2.5	12
104	An overview of biological processes and their potential for CO 2 capture. Journal of Environmental Management, 2016, 183, 41-58.	3.8	85
105	Absorption of CO 2 into aqueous mixtures of glycerol and monoethanolamine. Journal of Natural Gas Science and Engineering, 2016, 35, 605-613.	2.1	50
106	Experimental densities and viscosities of binary mixture of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or glycerol with sulfolane and their molecular interaction by COSMO-RS. Thermochimica Acta, 2016, 639, 130-147.	1.2	17
107	Key issues of ultrafiltration membrane water treatment plant scale-up from laboratory and pilot plant results. Water Science and Technology: Water Supply, 2016, 16, 438-444.	1.0	4
108	Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renewable and Sustainable Energy Reviews, 2016, 63, 533-555.	8.2	144

#	Article	IF	Citations
109	Catalytic role of solid acid catalysts in glycerol acetylation for the production of bio-additives: a review. RSC Advances, 2016, 6, 68885-68905.	1.7	84
110	Reactivity of carbon black diamond electrode during the electro-oxidation of Remazol Brilliant Blue R. RSC Advances, 2016, 6, 3690-3699.	1.7	6
111	Electrocoagulation by solar energy feed for textile wastewater treatment including mechanism and hydrogen production using a novel reactor design with a rotating anode. RSC Advances, 2016, 6, 10192-10204.	1.7	28
112	Sulfonated Beet Pulp as Solid Catalyst in Oneâ€Step Esterification of Industrial Palm Fatty Acid Distillate. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 319-327.	0.8	12
113	A review on pyrolysis of plastic wastes. Energy Conversion and Management, 2016, 115, 308-326.	4.4	1,296
114	Production of Palmâ€Based Esteramine Through Heterogeneous Catalysis. Journal of Surfactants and Detergents, 2016, 19, 11-18.	1.0	7
115	Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: an industrial scale case study. Journal of Cleaner Production, 2016, 112, 3152-3163.	4.6	54
116	Microwave-assisted transesterification of industrial grade crude glycerol for the production of glycerol carbonate. Chemical Engineering Journal, 2016, 284, 469-477.	6.6	56
117	Palm Shell-based Activated Carbon for Removing Reactive Black 5 Dye: Equilibrium and Kinetics Studies. BioResources, 2015, 11, .	0.5	8
118	Physicochemical characterization and thermal behavior of biodiesel and biodiesel–diesel blends derived from crude Moringa peregrina seed oil. Energy Conversion and Management, 2015, 92, 535-542.	4.4	56
119	A review of CO2 capture by absorption in ionic liquid-based solvents. Reviews in Chemical Engineering, 2015, 31, .	2.3	109
120	Density and viscosity of aqueous mixtures of N-methyldiethanolamines (MDEA), piperazine (PZ) and ionic liquids. Journal of Molecular Liquids, 2015, 209, 596-602.	2.3	42
121	p-Benzoquinone Anodic Degradation by Carbon Black Diamond Composite Electrodes. Electrochimica Acta, 2015, 169, 46-51.	2.6	11
122	A review of different solvents, mass transfer, and hydrodynamics for postcombustion CO2 capture. Reviews in Chemical Engineering, 2015, 31, .	2.3	43
123	Anodic Degradation of 2-Chlorophenol by Carbon Black Diamond and Activated Carbon Composite Electrodes. Electrochimica Acta, 2015, 180, 22-28.	2.6	20
124	Catalytic esterification of bioglycerol to value-added products. Reviews in Chemical Engineering, 2015, 31, .	2.3	29
125	On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass. Journal of Environmental Sciences, 2015, 33, 239-244.	3.2	8
126	Fabrication modeling of industrial CO2 ionic liquids absorber by artificial neural networks. Journal of Industrial and Engineering Chemistry, 2015, 25, 168-175.	2.9	18

#	Article	IF	CITATIONS
127	Preparation and characterization of carbon black diamond composite electrodes for anodic degradation of phenol. Electrochimica Acta, 2015, 153, 379-384.	2.6	19
128	Selected physical properties of binary mixtures of crude glycerol and methanol at various temperatures. Journal of Industrial and Engineering Chemistry, 2015, 21, 1039-1043.	2.9	21
129	Practical performance analysis of an industrial-scale ultrafiltration membrane water treatment plant. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 132-139.	2.7	32
130	Removal of heavy metal ions from mixed solutions via polymer-enhanced ultrafiltration using starch as a water-soluble biopolymer. Environmental Progress and Sustainable Energy, 2015, 34, 359-367.	1.3	18
131	A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renewable and Sustainable Energy Reviews, 2015, 42, 963-972.	8.2	155
132	Progress, prospect and challenges in glycerol purification process: A review. Renewable and Sustainable Energy Reviews, 2015, 42, 1164-1173.	8.2	201
133	Low pressure solubilities of CO2 in guanidinium trifluoromethanesulfonate–MDEA systems. Fluid Phase Equilibria, 2015, 385, 79-91.	1.4	23
134	Impact of in situ physical and chemical cleaning on PVDF membrane properties and performances. Chemical Engineering Science, 2015, 122, 426-435.	1.9	103
135	Removal of zinc and lead ions by polymer-enhanced ultrafiltration using unmodified starch as novel binding polymer. International Journal of Environmental Science and Technology, 2015, 12, 1825-1834.	1.8	20
136	A New Electrochemical Sensor Based on Task-Specific Ionic Liquids-Modified Palm Shell Activated Carbon for the Determination of Mercury in Water Samples. Sensors, 2014, 14, 13102-13113.	2.1	19
137	Unmodified starch as water-soluble binding polymer for chromium ions removal via polymer enhanced ultrafiltration system. Journal of Environmental Health Science & Engineering, 2014, 12, 61.	1.4	13
138	Cadmium (II)-selective electrode based on palm shell activated carbon modified with task-specific ionic liquid: kinetics and analytical applications. International Journal of Environmental Science and Technology, 2014, 11, 1115-1126.	1.8	11
139	Kinetic study of lipase catalyzed transesterification of jatropha oil in circulated batch packed bed reactor. Chemical Engineering Journal, 2014, 237, 123-130.	6.6	30
140	Effects of operational parameters on the treatment of nitrateâ€rich wastewater by autohydrogenotrophic denitrifying bacteria. Water and Environment Journal, 2014, 28, 556-565.	1.0	10
141	Prospective applications of renewable energy based electrochemical systems in wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 2014, 38, 36-46.	8.2	7 5
142	A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters. Energy Conversion and Management, 2014, 88, 484-497.	4.4	151
143	Removal of residual palm oil-based biodiesel catalyst using membrane ultra-filtration technique: An optimization study. AEJ - Alexandria Engineering Journal, 2014, 53, 705-715.	3.4	21
144	Density, Surface Tension, and Viscosity of Ionic Liquids (1-Ethyl-3-methylimidazolium diethylphosphate) Tj ETQqC Chemical & Chemical	0 0 0 rgBT 1.0	Overlock 10 35

Chemical & Engineering Data, 2014, 59, 1737-1746.

#	Article	IF	CITATIONS
145	An evaluation of Moringa peregrina seeds as a source for bio-fuel. Industrial Crops and Products, 2014, 61, 49-61.	2.5	59
146	Vapor pressure of aqueous methyldiethanolamine mixed with ionic liquids. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 380-386.	2.7	16
147	Physical properties of aqueous mixtures of N-methyldiethanolamine (MDEA) and ionic liquids. Journal of Industrial and Engineering Chemistry, 2014, 20, 3349-3355.	2.9	34
148	Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water. Chemical Engineering Journal, 2013, 225, 306-314.	6.6	108
149	Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 2013, 27, 118-127.	8.2	511
150	Reactive extraction of solid coconut waste to produce biodiesel. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 233-238.	2.7	44
151	Effects of Alkaline Environments at Mild Conditions on the Stability of PVDF Membrane: An Experimental Study. Industrial & Engineering Chemistry Research, 2013, 52, 15874-15882.	1.8	105
152	Improved yield of solvent free enzymatic methanolysis of palm and jatropha oils blended with castor oil. Applied Energy, 2013, 104, 905-909.	5.1	31
153	Blended aviation biofuel from esterified Jatropha curcas and waste vegetable oils. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 911-916.	2.7	42
154	Density and Viscosity of Aqueous Mixtures of $\langle i \rangle N \langle i \rangle$ -Methyldiethanolamines (MDEA) and Ionic Liquids. Journal of Chemical & Engineering Data, 2013, 58, 240-247.	1.0	58
155	The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 2013, 19, 14-26.	2.9	436
156	Impregnation of palm shell-based activated carbon with sterically hindered amines for CO2 adsorption. Chemical Engineering Journal, 2013, 219, 558-564.	6.6	86
157	The application of nano-crystalline PbO2 as an anode for the simultaneous bio-electrochemical denitrification and organic matter removal in an up-flow undivided reactor. Electrochimica Acta, 2013, 94, 327-335.	2.6	35
158	Castor oil â€" a more suitable feedstock for enzymatic production of methyl esters. Fuel Processing Technology, 2013, 112, 129-132.	3.7	32
159	Optimization and modeling of extraction of solid coconut waste oil. Journal of Food Engineering, 2013, 114, 228-234.	2.7	81
160	A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems. Journal of Industrial and Engineering Chemistry, 2013, 19, 1-13.	2.9	90
161	Optimization of Headspace Sampling Using Solid-Phase Microextraction (SPME) for Volatile Components in Starfruit Juice. International Journal of Food Engineering, 2013, 9, 227-232.	0.7	6
162	Absorption of Carbon Dioxide into Piperazine Activated Diethanolamine Solutions., 2012,, 42-49.		1

#	Article	IF	Citations
163	Removal of Simultaneous Multivalent Metal Ions via Polymer Enhanced Ultrafiltration by Using Unmodified Starch as Water-Based Polymer. Procedia Engineering, 2012, 44, 2002-2005.	1.2	O
164	Development of nitrate elimination by autohydrogenotrophic bacteria in bio-electrochemical reactors – A review. Biochemical Engineering Journal, 2012, 67, 251-264.	1.8	110
165	Kinetics of Carbon Dioxide absorption into aqueous MDEA+[bmim][BF4] solutions from 303 to 333K. Chemical Engineering Journal, 2012, 200-202, 317-328.	6.6	53
166	Sequential nitrification and denitrification in a novel palm shell granular activated carbon twin-chamber upflow bio-electrochemical reactor for treating ammonium-rich wastewater. Bioresource Technology, 2012, 125, 256-266.	4.8	29
167	High quality biodiesel obtained through membrane technology. Journal of Membrane Science, 2012, 421-422, 154-164.	4.1	53
168	Kinetics of CO2 Absorption Into Aqueous Blends of Diethanolamine and Methyldiethanolamine. , 2012, , 64-70.		3
169	Study on the improvement of the capacity of amine-impregnated commercial activated carbon beds for CO2 adsorbing. Chemical Engineering Journal, 2012, 183, 15-20.	6.6	78
170	Absorption of CO2 in aqueous mixtures of N-methyldiethanolamine and guanidinium tris(pentafluoroethyl)trifluorophosphate ionic liquid at high-pressure. Fluid Phase Equilibria, 2012, 322-323, 120-125.	1.4	41
171	Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination, 2012, 285, 1-13.	4.0	393
172	Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews, 2012, 16, 3275-3285.	8.2	232
173	The effects of water on biodiesel production and refining technologies: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 3456-3470.	8.2	229
174	TiO2/Al2O3 membrane reactor equipped with a methanol recovery unit to produce palm oil biodiesel. International Journal of Energy Research, 2012, 36, 120-129.	2.2	16
175	Neural network based controller for Cr6+–Fe2+ batch reduction process. Neurocomputing, 2011, 74, 3773-3784.	3.5	0
176	Membrane biodiesel production and refining technology: A critical review. Renewable and Sustainable Energy Reviews, 2011, 15, 5051-5062.	8.2	109
177	Refining technologies for the purification of crude biodiesel. Applied Energy, 2011, 88, 4239-4251.	5.1	177
178	Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids. Fluid Phase Equilibria, 2011, 309, 76-82.	1.4	92
179	Combustion characteristics of biomass in SouthEast Asia. Biomass and Bioenergy, 2011, 35, 3884-3890.	2.9	30
180	Density, viscosity, physical solubility and diffusivity of CO2 in aqueous MDEA+[bmim][BF4] solutions from 303 to 333K. Chemical Engineering Journal, 2011, 172, 763-770.	6.6	52

#	Article	IF	Citations
181	Solubilities of CO2 in aqueous N-methyldiethanolamine and guanidinium trifluoromethanesulfonate ionic liquid systems at elevated pressures. Fluid Phase Equilibria, 2011, 300, 89-94.	1.4	61
182	Textural characteristics, surface chemistry and activation of bleaching earth: A review. Chemical Engineering Journal, 2011, 170, 90-106.	6.6	137
183	A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresource Technology, 2011, 102, 1095-1102.	4.8	165
184	Equilibrium solubility of carbon dioxide in 2(methylamino)ethanol. Fluid Phase Equilibria, 2011, 303, 162-167.	1.4	23
185	Biodiesel separation and purification: A review. Renewable Energy, 2011, 36, 437-443.	4.3	398
186	Kinetics Study of Esterification Reaction of 2-Methyl-4-Chlorophenoxyacetic Acid (MCPA Acid). International Journal of Chemical Reactor Engineering, 2011, 9, .	0.6	6
187	Enzymes in Biofuels Production. Enzyme Research, 2011, 2011, 1-2.	1.8	11
188	Control of pH during water denitrification in an upflow bio-electrochemical reactor (UBER) using a pumparound system. Separation and Purification Technology, 2010, 72, 401-405.	3.9	9
189	Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling. Separation and Purification Technology, 2010, 76, 58-63.	3.9	36
190	Hybrid neural network for prediction of CO2 solubility in monoethanolamine and diethanolamine solutions. Korean Journal of Chemical Engineering, 2010, 27, 1864-1867.	1.2	11
191	Control of a hydrolyzer in an oleochemical plant using neural network based controllers. Neurocomputing, 2010, 73, 3242-3255.	3.5	9
192	High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews, 2010, 14, 1999-2008.	8.2	509
193	Biodiesel production using alumina-supported calcium oxide: An optimization study. Fuel Processing Technology, 2010, 91, 243-248.	3.7	205
194	Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil. Fuel Processing Technology, 2010, 91, 1378-1385.	3.7	160
195	Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine. Bioresource Technology, 2010, 101, 5098-5103.	4.8	171
196	A kinetic study of autohydrogenotrophic denitrification at the optimum pH and sodium bicarbonate dose. Bioresource Technology, 2010, 101, 2236-2242.	4.8	56
197	Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination, 2010, 262, 94-98.	4.0	82
198	Experimental Investigation on the Solubility and Initial Rate of Absorption of CO ₂ in Aqueous Mixtures of Methyldiethanolamine with the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data, 2010, 55, 5733-5738.	1.0	70

#	Article	IF	CITATIONS
199	Viscosities and Densities of Binary and Ternary Blends of Palm Oil + Palm Biodiesel + Diesel Fuel at Different Temperatures. Journal of Chemical & Engineering Data, 2010, 55, 504-507.	1.0	47
200	Modelling of Chromium Hexavalent Reduction by Ferrous Ion in a Batch Stirred Tank. Chemical Product and Process Modeling, 2009, 4, .	0.5	1
201	Improvement of autohydrogenotrophic nitrite reduction rate through optimization of pH and sodium bicarbonate dose in batch experiments. Journal of Bioscience and Bioengineering, 2009, 107, 275-280.	1.1	42
202	Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations. International Journal of Thermophysics, 2009, 30, 529-541.	1.0	40
203	Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review. Water, Air, and Soil Pollution, 2009, 200, 59-77.	1.1	733
204	Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material. Electrochimica Acta, 2009, 54, 4164-4171.	2.6	56
205	Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 2009, 90, 770-777.	3.7	679
206	Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria. Journal of Hazardous Materials, 2009, 162, 1507-1513.	6.5	76
207	Effect of impregnation of activated carbon with chelating polymer on adsorption kinetics of Pb2+. Journal of Hazardous Materials, 2009, 166, 1526-1529.	6.5	26
208	Fixed-bed adsorption of metal ions from aqueous solution on polyethyleneimine-impregnated palm shell activated carbon. Chemical Engineering Journal, 2009, 148, 8-14.	6.6	48
209	Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology. Applied Catalysis A: General, 2009, 366, 154-159.	2.2	166
210	Enhanced Adsorption of Metal Ions Onto Polyethyleneimine-Impregnated Palm Shell Activated Carbon: Equilibrium Studies. Water, Air, and Soil Pollution, 2008, 192, 337-348.	1.1	25
211	Kinetic of CO2 absorption and carbamate formation in aqueous solutions of diethanolamine. Korean Journal of Chemical Engineering, 2008, 25, 451-460.	1.2	18
212	Recovery and reutilisation of copper from metal hydroxide sludges. Clean Technologies and Environmental Policy, 2008, 10, 131-136.	2.1	14
213	Guest editorial: separation processes. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 355-356.	0.8	0
214	Treatment of Skim Latex Serum Using Gas Sparged Ultrafiltration. Asia-Pacific Journal of Chemical Engineering, 2008, 13, 667-674.	0.0	3
215	Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon. Separation and Purification Technology, 2008, 62, 609-613.	3.9	91
216	Continuous adsorption of lead ions in a column packed with palm shell activated carbon. Journal of Hazardous Materials, 2008, 155, 109-113.	6.5	42

#	Article	IF	CITATIONS
217	Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresource Technology, 2008, 99, 3965-3974.	4.8	471
218	Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ion selective electrode. Bioresource Technology, 2008, 99, 5786-5792.	4.8	197
219	Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312, 131-135.	2.3	45
220	Polyethyleneimine impregnation on activated carbon: Effects of impregnation amount and molecular number on textural characteristics and metal adsorption capacities. Materials Chemistry and Physics, 2008, 112, 417-422.	2.0	21
221	Density of Palm Oil-Based Methyl Ester. Journal of Chemical & Engineering Data, 2008, 53, 877-880.	1.0	69
222	Densities of Ethyl Esters Produced from Different Vegetable Oils. Journal of Chemical & Engineering Data, 2008, 53, 2222-2225.	1.0	28
223	Prediction of Palm Oil-Based Methyl Ester Biodiesel Density Using Artificial Neural Networks. Journal of Applied Sciences, 2008, 8, 1938-1943.	0.1	14
224	Modification of granular activated carbon using low molecular weight polymer for enhanced removal of Cu2 +  from aqueous solution. Water Science and Technology, 2007, 56, 95-101.	1.2	8
225	Special issue on process systems engineering. Asia-Pacific Journal of Chemical Engineering, 2007, 2, 499-500.	0.8	0
226	Chemical characterization of mediumâ€chainâ€length polyhydroxyalkanoates (PHAs) recovered by enzymatic treatment and ultrafiltration. Journal of Chemical Technology and Biotechnology, 2007, 82, 847-855.	1.6	45
227	Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresource Technology, 2007, 98, 145-149.	4.8	378
228	Production of carbon molecular sieves from palm shell based activated carbon by pore sizes modification with benzene for methane selective separation. Fuel Processing Technology, 2007, 88, 599-605.	3.7	56
229	Impregnation of palm shell activated carbon with polyethyleneimine and its effects on Cd2+ adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 307, 128-136.	2.3	43
230	Response surface optimization of conditions for clarification of carambola fruit juice using a commercial enzyme. Journal of Food Engineering, 2007, 81, 65-71.	2.7	125
231	Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 2007, 147, 752-758.	6.5	267
232	Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Separation and Purification Technology, 2007, 52, 403-415.	3.9	560
233	Carbon Modified Silica based Adsorbent for Potential Application. Journal of Nanoparticle Research, 2007, 9, 555-559.	0.8	7
234	Synthesis of carbon molecular sieves from palm shell by carbon vapor deposition. Journal of Porous Materials, 2007, 14, 393-399.	1.3	16

#	Article	IF	Citations
235	An experimental investigation on the rate of CO2 absorption into aqueous methyldiethanolamine solutions. Korean Journal of Chemical Engineering, 2007, 24, 16-23.	1.2	34
236	Carbon molecular sieves from palm shell: Effect of the benzene deposition times on gas separation properties. Separation and Purification Technology, 2007, 57, 289-293.	3.9	34
237	Electrodeposition of copper and lead on palm shell activated carbon in a flow-through electrolytic cell. Desalination, 2006, 194, 192-201.	4.0	50
238	Removal of lead from aqueous solutions on palm shell activated carbon. Bioresource Technology, 2006, 97, 2350-2355.	4.8	185
239	Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration. Biochemical Engineering Journal, 2006, 30, 260-268.	1.8	69
240	Modeling of CO2 solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh–Mather model. Fluid Phase Equilibria, 2005, 231, 150-162.	1.4	153
241	Effect of Piperazine on CO2Loading in Aqueous Solutions of MDEA at Low Pressure. International Journal of Thermophysics, 2004, 25, 1863-1870.	1.0	78
242	Solubility of CO2 in Aqueous Piperazine and its Modeling using the Kent-Eisenberg Approach. Chemical Engineering and Technology, 2004, 27, 65-70.	0.9	67
243	Modelling of carbon dioxide absorption in aqueous solutions of AMP and MDEA and their blends using Aspenplus. Separation and Purification Technology, 2002, 29, 153-162.	3.9	31
244	Use of Glassy Carbon Electrode for the Electrodeposition of Heavy Metal Pollutants From Aqueous Solutions. Chemie-Ingenieur-Technik, 2001, 73, 760-760.	0.4	0
245	Equilibrium Constant for Carbamate Formation from Monoethanolamine and Its Relationship with Temperature. Journal of Chemical & Engineering Data, 1999, 44, 887-891.	1.0	32
246	Analysis of Equilibrium Data of CO2 in Aqueous Solutions of Diethanolamine (DEA), Methyldiethanolamine (MDEA) and Their Mixtures Using the Modified Kent Eisenberg Model. Chemical Engineering Research and Design, 1998, 76, 961-968.	2.7	122
247	Temperature Dependency of the Equilibrium Constant for the Formation of Carbamate From Diethanolamine. Journal of Chemical & Samp; Engineering Data, 1997, 42, 692-696.	1.0	26
248	Equilibrium concentration profiles of species in CO2—alkanolamine—water systems. Separation and Purification Technology, 1996, 10, 13-18.	0.3	25
249	EQUILIBRIUM OF CO2 IN AQUEOUS DIETHANOLAMINE(DEA) AND AMINO METHYL PROPANOL (AMP) SOLUTIONS. Chemical Engineering Communications, 1995, 140, 157-171.	1.5	27
250	A twin chamber up-flow bio-electrochemical pumparound system for sequential nitrification and denitrification of reject water. Desalination and Water Treatment, 0, , 1-8.	1.0	1
251	Bio-electrochemical treatment of wastewater with high ammonium concentration., 0, 211, 99-104.		1
252	Preparation of eco-friendly adsorbent for enhancing CO2 adsorption capacity. Separation Science and Technology, 0, , 1-15.	1.3	2