Stephen A Boppart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6886737/publications.pdf

Version: 2024-02-01

515 papers 20,836 citations

9264 74 h-index 127 g-index

528 all docs

528 docs citations

528 times ranked

13430 citing authors

#	Article	IF	Citations
1	Imaging and characterization of transitions in biofilm morphology via anomalous diffusion following environmental perturbation. Biomedical Optics Express, 2022, 13, 1654-1670.	2.9	1
2	FreeView: portable multiphoton imaging system for multimodal high-data-content label-free imaging. , 2022, , .		0
3	Label-free metabolic and structural profiling of dynamic biological samples using multimodal optical microscopy with sensorless adaptive optics. Scientific Reports, 2022, 12, 3438.	3.3	12
4	Ultra-parallel label-free optophysiology of neural activity. IScience, 2022, 25, 104307.	4.1	5
5	Label-free multimodal nonlinear optical imaging of needle biopsy cores for intraoperative cancer diagnosis. Journal of Biomedical Optics, 2022, 27, .	2.6	4
6	Self-locomotive, antimicrobial microrobot (SLAM) swarm for enhanced biofilm elimination. Biomaterials, 2022, 287, 121610.	11.4	10
7	Combining linear and nonlinear polarization-sensitive imaging modalities for enhanced characterizations of collagen., 2022,,.		O
8	Computational Photon Counting Using Multithreshold Peak Detection for Fast Fluorescence Lifetime Imaging Microscopy. ACS Photonics, 2022, 9, 2748-2755.	6.6	7
9	Evaluating optical coherence tomography for surgical margin assessment of canine mammary tumours. Veterinary and Comparative Oncology, 2021, 19, 697-706.	1.8	5
10	Optical coherence tomography imaging of excised canine apocrine gland anal sac adenocarcinoma tumours. Veterinary and Comparative Oncology, 2021, 19, 759-762.	1.8	5
11	<i>In vivo</i> dynamic characterization of the human tympanic membrane using pneumatic optical coherence tomography. Journal of Biophotonics, 2021, 14, e202000215.	2.3	7
12	Diagnostic accuracy of optical coherence tomography for assessing surgical margins of canine soft tissue sarcomas in observers of different specialties. Veterinary Surgery, 2021, 50, 111-120.	1.0	6
13	Label-Free Multimodal Multiphoton Intravital Imaging. Advances in Experimental Medicine and Biology, 2021, 3233, 127-146.	1.6	O
14	Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. Theranostics, 2021, 11, 3229-3243.	10.0	60
15	Biomechanical sensing of <i>in vivo</i> magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography. Theranostics, 2021, 11, 5620-5633.	10.0	17
16	High-speed label-free two-photon fluorescence microscopy of metabolic transients during neuronal activity. Applied Physics Letters, 2021, 118, 081104.	3.3	6
17	10.1063/5.0031348.1., 2021,,.		0
18	Label-free characterization of single extracellular vesicles using two-photon fluorescence lifetime imaging microscopy of NAD(P)H. Scientific Reports, 2021, 11, 3308.	3.3	18

#	Article	IF	Citations
19	Automated single-shot sensorless adaptive optics on a multimodal imaging platform using computational adaptive optics., 2021,,.		1
20	Tracking the formation and degradation of fatty-acid-accumulated mitochondria using label-free chemical imaging. Scientific Reports, 2021, 11, 6671.	3.3	6
21	Longitudinal optical coherence tomography to visualize the in vivo response of middle ear biofilms to antibiotic therapy. Scientific Reports, 2021, 11, 5176.	3.3	12
22	Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2021, 12, 3021.	2.9	22
23	Computational adaptive optics for polarization-sensitive optical coherence tomography. Optics Letters, 2021, 46, 2071.	3.3	5
24	Handheld Briefcase Optical Coherence Tomography with Real-Time Machine Learning Classifier for Middle Ear Infections. Biosensors, 2021, 11, 143.	4.7	9
25	The Cholesterol Metabolite 27HC Increases Secretion of Extracellular Vesicles Which Promote Breast Cancer Progression. Endocrinology, 2021, 162, .	2.8	17
26	Compressive sensing for polarization sensitive optical coherence tomography. Journal Physics D: Applied Physics, 2021, 54, 294005.	2.8	4
27	Longitudinal monitoring of cell metabolism in biopharmaceutical production using labelâ€free fluorescence lifetime imaging microscopy. Biotechnology Journal, 2021, 16, e2000629.	3.5	8
28	Roadmap on bio-nano-photonics. Journal of Optics (United Kingdom), 2021, 23, 073001.	2.2	4
29	Inactivation and sensitization of Pseudomonas aeruginosa by microplasma jet array for treating otitis media. Npj Biofilms and Microbiomes, 2021, 7, 48.	6.4	9
30	Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. Biomedical Optics Express, 2021, 12, 4003.	2.9	11
31	Synthetic polarization-sensitive optical coherence tomography by deep learning. Npj Digital Medicine, 2021, 4, 105.	10.9	11
32	Intraoperative Label-Free Multimodal Nonlinear Optical Imaging for Point-of-Procedure Cancer Diagnostics. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-12.	2.9	7
33	Diagnostic accuracy of optical coherence tomography for surgical margin assessment of feline injectionâ€site sarcoma. Veterinary and Comparative Oncology, 2021, 19, 632-640.	1.8	1
34	Simultaneous 4-phase-shifted full-field optical coherence microscopy. Biomedical Optics Express, 2021, 12, 981.	2.9	7
35	Efficacy of endotracheal tube suctioning in intubated intensive care unit patients determined by in vivo catheter-based optical coherence tomography—a pilot study. Quantitative Imaging in Medicine and Surgery, 2021, 11, 1-8.	2.0	3
36	Single-photon peak event detection (SPEED): a computational method for fast photon counting in fluorescence lifetime imaging microscopy. Optics Express, 2021, 29, 37759.	3.4	13

#	Article	IF	Citations
37	Label-free Multimodal Nonlinear Optical Imaging of Needle Biopsies: Towards Real-time Monitoring of Living Biopsies. , 2021, , .		O
38	Automated classification of otitis media in pediatric OCT images: Augmenting with gold-standard animal model data. , 2021 , , .		0
39	Deep-Learning-Enabled Polarization-Sensitive Optical Coherence Tomography (OCT)., 2021,,.		0
40	Differential Uptake of Antisense Oligonucleotides in Mouse Hepatocytes and Macrophages Revealed by Simultaneous Two-Photon Excited Fluorescence and Coherent Raman Imaging. Nucleic Acid Therapeutics, 2021, , .	3.6	6
41	3D OCT characterization and quantification of refractive indices of bacteria and biofilms with antibiotic interventions., 2021,,.		1
42	Development of a Smartphone-Based Skin Simulation Model for Medical Education. Simulation in Healthcare, 2021, 16, 414-419.	1.2	3
43	Assessing the Effect of Middle Ear Effusions on Wideband Acoustic Immittance Using Optical Coherence Tomography. Ear and Hearing, 2020, 41, 811-824.	2.1	19
44	Assessing the severity of psoriasis through multivariate analysis of optical images from non-lesional skin. Scientific Reports, 2020, 10, 9154.	3.3	15
45	Dynamic Signatures of Lipid Droplets as New Markers to Quantify Cellular Metabolic Changes. Analytical Chemistry, 2020, 92, 15943-15952.	6.5	18
46	In vivo characterization of minipig skin as a model for dermatological research using multiphoton microscopy. Experimental Dermatology, 2020, 29, 953-960.	2.9	15
47	Effect of Nonphosphorus Corrosion Inhibitors on Biofilm Pore Structure and Mechanical Properties. Environmental Science & Environmental Science & Envi	10.0	7
48	The feasibility and utility of optical coherence tomography directed histopathology for surgical margin assessment of canine mast cell tumours. Veterinary and Comparative Oncology, 2020, 19, 616-623.	1.8	7
49	Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy. Quantitative Imaging in Medicine and Surgery, 2020, 10, 2177-2190.	2.0	12
50	Non-invasive monitoring of pharmacodynamics during the skin wound healing process using multimodal optical microscopy. BMJ Open Diabetes Research and Care, 2020, 8, e000974.	2.8	15
51	Video-rate multimodal multiphoton imaging and three-dimensional characterization of cellular dynamics in wounded skin. Journal of Innovative Optical Health Sciences, 2020, 13, .	1.0	9
52	Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences. Scientific Reports, 2020, 10, 2540.	3.3	3
53	Otitis Media Middle Ear Effusion Identification and Characterization Using an Optical Coherence Tomography Otoscope. Otolaryngology - Head and Neck Surgery, 2020, 162, 367-374.	1.9	21
54	Phase-based Eulerian motion magnification reveals eardrum mobility from pneumatic otoscopy without sealing the ear canal. JPhys Photonics, 2020, 2, 034004.	4.6	4

#	Article	IF	CITATIONS
55	Handheld optical coherence tomography for clinical assessment of dental plaque and gingiva. Journal of Biomedical Optics, 2020, 25, .	2.6	13
56	Simultaneous two-photon activation and imaging of neural activity based on spectral–temporal modulation of supercontinuum light. Neurophotonics, 2020, 7, 045007.	3.3	7
57	Depixelation and enhancement of fiber bundle images by bundle rotation. Applied Optics, 2020, 59, 536.	1.8	15
58	Full-field spectral-domain optical interferometry for snapshot three-dimensional microscopy. Biomedical Optics Express, 2020, 11 , 5903.	2.9	15
59	Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm. Optics Express, 2020, 28, 23306.	3.4	11
60	Two-photon microscope using a fiber-based approach for supercontinuum generation and light delivery to a small-footprint optical head. Optics Letters, 2020, 45, 909.	3.3	7
61	K-means clustering of coherent Raman spectra from extracellular vesicles visualized by label-free multiphoton imaging. Optics Letters, 2020, 45, 3613.	3.3	6
62	Single-shot two-dimensional spectroscopic magnetomotive optical coherence elastography with graphics processing unit acceleration. Optics Letters, 2020, 45, 4124.	3.3	5
63	Emergency ventilator for COVID-19. PLoS ONE, 2020, 15, e0244963.	2.5	26
64	Imaging Heterogeneity of NAD(P)H in Individual Extracellular Vesicles Using Fluorescence Lifetime Imaging Microscopy (FLIM)., 2020,,.		0
65	Characterizing Treatment Response of Pancreatic Tumor Patient-Derived Xenografts in Mice by Simultaneous Label-Free Autofluorescence Multi-Harmonic (SLAM) Microscopy. , 2020, , .		0
66	Development of a fast calibration method for image mapping spectrometry. Applied Optics, 2020, 59, 6062.	1.8	5
67	Statistical evaluation of reader variability in assessing the diagnostic performance of optical coherence tomography. Journal of Biomedical Optics, 2020, 25, .	2.6	1
68	Characterization of Magnetic Nanoparticle-Seeded Microspheres for Magnetomotive and Multimodal Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-14.	2.9	4
69	Comparison between optical coherence tomographic and histopathologic appearances of artifacts caused by common surgical conditions and instrumentation. Veterinary Surgery, 2019, 48, 1361-1371.	1.0	6
70	Low-noise femtosecond Cherenkov fiber laser, continuously tunable across the entire red-green-blue spectral range. EPJ Web of Conferences, 2019, 205, 01002.	0.3	0
71	Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond. APL Photonics, 2019, 4, .	5.7	20
72	Label-free molecular profiling for identification of biomarkers in carcinogenesis using multimodal multiphoton imaging. Quantitative Imaging in Medicine and Surgery, 2019, 9, 742-742.	2.0	12

#	Article	IF	Citations
73	Automated classification platform for the identification of otitis media using optical coherence tomography. Npj Digital Medicine, 2019, 2, 22.	10.9	30
74	Label-free visualization and characterization of extracellular vesicles in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24012-24018.	7.1	58
75	Real-time intraoperative diagnosis by deep neural network driven multiphoton virtual histology. Npj Precision Oncology, 2019, 3, 33.	5.4	29
76	In vivo detection of endotracheal tube biofilms in intubated critical care patients using catheterâ€based optical coherence tomography. Journal of Biophotonics, 2019, 12, e201800307.	2.3	8
77	Intraâ€operative imaging of surgical margins of canine soft tissue sarcoma using optical coherence tomography. Veterinary and Comparative Oncology, 2019, 17, 80-88.	1.8	16
78	Interstitial magnetic thermotherapy dosimetry based on shear wave magnetomotive optical coherence elastography. Biomedical Optics Express, 2019, 10, 539.	2.9	12
79	Digital staining through the application of deep neural networks to multi-modal multi-photon microscopy. Biomedical Optics Express, 2019, 10, 1339.	2.9	41
80	Simultaneous label-free autofluorescence and multi-harmonic imaging reveals in vivo structural and metabolic changes in murine skin. Biomedical Optics Express, 2019, 10, 5431.	2.9	20
81	Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime imaging microscopy. Biomedical Optics Express, 2019, 10, 6408.	2.9	25
82	Automated sensorless single-shot closed-loop adaptive optics microscopy with feedback from computational adaptive optics. Optics Express, 2019, 27, 12998.	3.4	10
83	Local wavefront mapping in tissue using computational adaptive optics OCT. Optics Letters, 2019, 44, 1186.	3.3	8
84	Detection of weak near-infrared optical imaging signals under ambient light by optical parametric amplification. Optics Letters, 2019, 44, 4391.	3.3	13
85	Intraoperative optical coherence tomography of the human thyroid: Feasibility for surgical assessment. Translational Research, 2018, 195, 13-24.	5.0	11
86	Magnetomotive Displacement of the Tympanic Membrane Using Magnetic Nanoparticles: Toward Enhancement of Sound Perception. IEEE Transactions on Biomedical Engineering, 2018, 65, 2837-2846.	4.2	10
87	Direct Analysis of Pathogenic Structures Affixed to the Tympanic Membrane during Chronic Otitis Media. Otolaryngology - Head and Neck Surgery, 2018, 159, 117-126.	1.9	25
88	Investigating the healing mechanisms of an angiogenesisâ€promoting topical treatment for diabetic wounds using multimodal microscopy. Journal of Biophotonics, 2018, 11, e201700195.	2.3	14
89	Optical assessment of the <i>in vivo</i> tympanic membrane status using a handheld optical coherence tomography-based otoscope. Acta Oto-Laryngologica, 2018, 138, 367-374.	0.9	15
90	Intraoperative visualization of the tumor microenvironment and quantification of extracellular vesicles by label-free nonlinear imaging. Science Advances, 2018, 4, eaau 5603.	10.3	72

#	Article	IF	Citations
91	Disintegration of simulated drinking water biofilms with arrays of microchannel plasma jets. Npj Biofilms and Microbiomes, 2018, 4, 24.	6.4	16
92	Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nature Communications, 2018, 9, 2125.	12.8	178
93	Pneumatic low-coherence interferometry otoscope to quantify tympanic membrane mobility and middle ear pressure. Biomedical Optics Express, 2018, 9, 397.	2.9	14
94	Combined hardware and computational optical wavefront correction. Biomedical Optics Express, 2018, 9, 2562.	2.9	16
95	Wavefront measurement using computational adaptive optics. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 466.	1.5	14
96	Effect of divalent ions and a polyphosphate on composition, structure, and stiffness of simulated drinking water biofilms. Npj Biofilms and Microbiomes, 2018, 4, 15.	6.4	33
97	In vivo detection of nanometer-scale structural changes of the human tympanic membrane in otitis media. Scientific Reports, 2018, 8, 8777.	3.3	27
98	Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications. Journal of Biomedical Optics, 2018, 23, 1.	2.6	16
99	Slide-free virtual histochemistry (Part I): development via nonlinear optics. Biomedical Optics Express, 2018, 9, 5240.	2.9	29
100	Slide-free virtual histochemistry (Part II): detection of field cancerization. Biomedical Optics Express, 2018, 9, 5253.	2.9	27
101	Complementary use of polarization-sensitive and standard OCT metrics for enhanced intraoperative differentiation of breast cancer. Biomedical Optics Express, 2018, 9, 6519.	2.9	29
102	High-speed imaging of transient metabolic dynamics using two-photon fluorescence lifetime imaging microscopy. Optica, 2018, 5, 1290.	9.3	43
103	Optical Parametric Amplification of Gated Confocal Reflectance Microscopy Signals in Scattering Media. , 2018, , .		0
104	Nonâ€invasive optical assessment of viscosity of middle ear effusions in otitis media. Journal of Biophotonics, 2017, 10, 394-403.	2.3	43
105	Labelâ€free <i>in vivo </i> cellularâ€level detection and imaging of apoptosis. Journal of Biophotonics, 2017, 10, 143-150.	2.3	29
106	Concurrence of extracellular vesicle enrichment and metabolic switch visualized label-free in the tumor microenvironment. Science Advances, 2017, 3, e1600675.	10.3	39
107	Quantitative characterization of mechanically indented <i>in vivo</i> human skin in adults and infants using optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 034001.	2.6	7
108	Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13, 415-424.	8.0	274

#	Article	IF	CITATIONS
109	<i>In Vivo</i> Assessment of Engineered Skin Cell Delivery with Multimodal Optical Microscopy. Tissue Engineering - Part C: Methods, 2017, 23, 434-442.	2.1	3
110	Intraoperative optical coherence tomography for soft tissue sarcoma differentiation and margin identification. Lasers in Surgery and Medicine, 2017, 49, 240-248.	2.1	26
111	Coherent control of an opsin in living brain tissue. Nature Physics, 2017, 13, 1111-1116.	16.7	19
112	Ratiometric analysis of optical coherence tomography–measured <i>inâ€vivo</i> retinal layer thicknesses for the detection of early diabetic retinopathy. Journal of Biophotonics, 2017, 10, 1430-1441.	2.3	5
113	Quantitative Pneumatic Otoscopy Using a Light-Based Ranging Technique. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 555-568.	1.8	17
114	Review of optical coherence tomography in oncology. Journal of Biomedical Optics, 2017, 22, 1.	2.6	104
115	Low-cost hand-held probe for depth-resolved low-coherence interferometry. Biomedical Optics Express, 2017, 8, 338.	2.9	23
116	Computational optical coherence tomography [Invited]. Biomedical Optics Express, 2017, 8, 1549.	2.9	51
117	Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation. Photonics Research, 2017, 5, 750.	7.0	18
118	Introduction to the feature issue on the 25 year anniversary of optical coherence tomography. Biomedical Optics Express, 2017, 8, 3289.	2.9	5
119	Stain-Free Structural and Molecular Histopathology using Programmable Supercontinuum Pulses. , 2017, , .		0
120	A quantitative framework for the analysis of multimodal optical microscopy images. Quantitative Imaging in Medicine and Surgery, 2017, 7, 24-37.	2.0	9
121	Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention. Journal of Biomedical Optics, 2017, 22, 1.	2.6	37
122	Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements. Journal of Biomedical Optics, 2017, 22, 1.	2.6	46
123	Intracellular imaging of docosanol in living cells by coherent anti-Stokes Raman scattering microscopy. Journal of Biomedical Optics, 2017, 22, 070502.	2.6	11
124	Biophotonics: the big picture. Journal of Biomedical Optics, 2017, 23, 1.	2.6	22
125	Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment. Journal of Biomedical Optics, 2017, 23, 1.	2.6	30
126	In vivo 3D imaging of the human tympanic membrane using a wide-field diagonal-scanning optical coherence tomography probe. Applied Optics, 2017, 56, D115.	2.1	15

#	Article	IF	Citations
127	Quantitative Multimodal 3D Characterization of Cellular Dynamics in Wounded Skin., 2017,,.		O
128	High-Speed Two-Photon Fluorescence Lifetime Imaging Microscopy of NADH for Label-Free Metabolic Imaging. , 2017, , .		0
129	Adaptive multiphoton imaging by high peak-power coherent fiber supercontinuum. , 2017, , .		0
130	Depth-Resolved Characterization of the In Vivo Tympanic Membrane using Nano-Sensitive Optical Coherence Tomography. , $2017, , .$		0
131	Wavefront Measurement Using Computational Adaptive Optics OCT., 2017,,.		1
132	Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging. Journal of Sensors, 2016, 2016, 1-7.	1.1	16
133	Ratiometric analysis of in vivo retinal layer thicknesses in multiple sclerosis. Journal of Biomedical Optics, 2016, 21, 1.	2.6	3
134	Multimodal Multiphoton Microscopy of Carcinogenesis. , 2016, , .		0
135	Progress in Cherenkov femtosecond fiber lasers. Journal Physics D: Applied Physics, 2016, 49, 023001.	2.8	27
136	Longitudinal <i>in vivo</i> tracking of adverse effects following topical steroid treatment. Experimental Dermatology, 2016, 25, 362-367.	2.9	10
137	Stain-free histopathology by programmable supercontinuum pulses. Nature Photonics, 2016, 10, 534-540.	31.4	177
138	Detection of retinal blood vessel changes in multiple sclerosis with optical coherence tomography. Biomedical Optics Express, 2016, 7, 2321.	2.9	21
139	A Mosaicking Approach for In Vivo Thickness Mapping of the Human Tympanic Membrane Using Low Coherence Interferometry. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 403-416.	1.8	30
140	Filtering for unwrapping noisy Doppler optical coherence tomography images for extended microscopic fluid velocity measurement range. Optics Letters, 2016, 41, 4024.	3.3	4
141	<i>In vivo</i> evaluation of adipose- and muscle-derived stem cells as a treatment for nonhealing diabetic wounds using multimodal microscopy. Journal of Biomedical Optics, 2016, 21, 086006.	2.6	8
142	Automated computational aberration correction method for broadband interferometric imaging techniques. Optics Letters, 2016, 41, 3324.	3.3	22
143	Raman Spectroscopic Analysis Reveals Abnormal Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer. Scientific Reports, 2016, 6, 32922.	3.3	31
144	Intraoperative optical coherence tomography for assessing human lymph nodes for metastatic cancer. BMC Cancer, 2016, 16, 144.	2.6	48

#	Article	IF	Citations
145	Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure. Environmental Science & Environmental Science & Disinfectant Exposure. Environmental Science & Disinfectant Exposure.	10.0	66
146	Intravascular magnetomotive optical coherence tomography of targeted earlyâ€stage atherosclerotic changes in ex vivo hyperlipidemic rabbit aortas. Journal of Biophotonics, 2016, 9, 109-116.	2.3	12
147	Computed Optical Interferometric Imaging: Methods, Achievements, and Challenges. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 186-196.	2.9	9
148	Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 104-119.	2.9	18
149	Computational adaptive optics of the human retina. , 2016, , .		1
150	Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography. Applied Optics, 2016, 55, 2034.	2.1	16
151	Rapid diagnosis and differentiation of microbial pathogens in otitis media with a combined Raman spectroscopy and low-coherence interferometry probe: toward in vivo implementation. Journal of Biomedical Optics, 2016, 21, 1.	2.6	15
152	Filtering Doppler OCT Improves Unwrapping and Extends Range of Microscopic Fluid Velocity Measurement. , 2016, , .		0
153	Filtering and Unwrapping Doppler Optical Coherence Tomography Velocity Maps. , 2016, , .		0
154	Intraoperative In Vivo Assessment of Lymph Nodes with Optical Coherence Tomography. , 2016, , .		0
155	Spectroscopic Raman Analysis of Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer. , 2016, , .		0
156	Intraoperative OCT for Soft Tissue Sarcoma Margin Identification. , 2016, , .		0
157	Correction of aberrations in the human eye using computational methods. SPIE Newsroom, 2016, 2016, .	0.1	0
158	Effect of recombinant interleukin-12 on murine skin regeneration and cell dynamics using in vivo multimodal microscopy. Biomedical Optics Express, 2015, 6, 4277.	2.9	19
159	Polarization-sensitive interferometric synthetic aperture microscopy. Applied Physics Letters, 2015, 107, 211106.	3.3	9
160	Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma. Journal of Ophthalmic Inflammation and Infection, 2015, 5, 53.	2.2	7
161	Finding Bugs in your Ear: Clinical Imaging of Middle-Ear Infections and Biofilms using OCT., 2015,,.		0
162	Suppressing Short-Term Polarization Noise and Related Spectral Decoherence in All-Normal Dispersion Fiber Supercontinuum Generation. Journal of Lightwave Technology, 2015, 33, 1814-1820.	4.6	48

#	Article	IF	Citations
163	A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics. Proceedings of SPIE, 2015 , , .	0.8	3
164	Computational adaptive optics for broadband optical interferometric tomography of biological tissue. , $2015, \ldots$		0
165	Noninvasive depthâ€resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media. Laryngoscope, 2015, 125, E276-82.	2.0	69
166	Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. Physics in Medicine and Biology, 2015, 60, 727-739.	3.0	16
167	Data Analysis and Signal Postprocessing for Optical Coherence Tomography. , 2015, , 407-436.		0
168	Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study. Annals of Surgical Oncology, 2015, 22, 3356-3362.	1.5	96
169	Computational high-resolution optical imaging of the living human retina. Nature Photonics, 2015, 9, 440-443.	31.4	123
170	Role of Biofilm Roughness and Hydrodynamic Conditions in <i>Legionella pneumophila</i> Adhesion to and Detachment from Simulated Drinking Water Biofilms. Environmental Science & Environmental Scienc	10.0	91
171	Non-invasive, real-time reporting drug release in vitro and in vivo. Chemical Communications, 2015, 51, 6948-6951.	4.1	51
172	Mechanical contrast in spectroscopic magnetomotive optical coherence elastography. Physics in Medicine and Biology, 2015, 60, 6655-6668.	3.0	15
173	Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources. , 2015, , 1237-1256.		0
174	Computational Adaptive Optics for High-Resolution Imaging of the Living Human Retina., 2015, , .		0
175	Molecular Optical Coherence Tomography Contrast Enhancement and Imaging., 2015, , 1429-1454.		2
176	Real-time Imaging of the Resection Bed Using a Handheld Probe to Reduce Incidence of Microscopic Positive Margins in Cancer Surgery. Cancer Research, 2015, 75, 3706-3712.	0.9	115
177	Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier. Journal of Biophotonics, 2015, 8, 512-521.	2.3	6
178	Optical Coherence Elastography. , 2015, , 1007-1054.		11
179	Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2015, 5, 69-77.	2.0	36
180	Optical Coherence Tomography in Tissue Engineering. , 2015, , 1965-2001.		0

#	Article	IF	CITATIONS
181	Sensor-Based Manual Scanning Technique for Hand-Held Optical Coherence Tomography Imaging. , 2015, , .		0
182	Interferometric Synthetic Aperture Microscopy (ISAM)., 2015,, 965-1004.		2
183	Intraoperative OCT in Surgical Oncology. , 2015, , 2393-2412.		1
184	DSP Technology and Methods for OCT. , 2015, , 437-458.		0
185	Optical coherence microscopy using hardware and computational adaptive optics. , 2015, , .		0
186	Extracting Full Susceptibility Tensor Using Modified Optical Coherence Tomography. , 2015, , .		0
187	Automation of Interferometric Synthetic Aperture Microscopy. , 2015, , .		0
188	Computational Aberration Correction for Human Retinal Imaging. Optics and Photonics News, 2015, 2015, 43.	0.5	0
189	Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation. Translational Vision Science and Technology, 2014, 3, 3.	2.2	6
190	Optical coherence tomography for advanced screening in the primary care office. Journal of Biophotonics, 2014, 7, 525-533.	2.3	61
191	Tunable femtosecond Cherenkov fiber laser. , 2014, , .		1
192	Implementation and evaluation of Google Glass for visualizing real-time image and patient data in the primary care office. Proceedings of SPIE, 2014 , , .	0.8	4
193	<i>In vivo</i> intra-operative breast tumor margin detection using a portable OCT system with a handheld surgical imaging probe. Proceedings of SPIE, 2014, , .	0.8	5
194	Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves. Biomedical Optics Express, 2014, 5, 2349.	2.9	41
195	Computed optical interferometric tomography for high-speed volumetric cellular imaging. Biomedical Optics Express, 2014, 5, 2988.	2.9	49
196	Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2014, 5, 3417.	2.9	63
197	Longitudinal label-free tracking of cell death dynamics in living engineered human skin tissue with a multimodal microscope. Biomedical Optics Express, 2014, 5, 3699.	2.9	19
198	Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography. Biomedical Optics Express, 2014, 5, 4131.	2.9	37

#	Article	IF	Citations
199	Introduction to the BIOMED 2014 feature issue. Biomedical Optics Express, 2014, 5, 4144.	2.9	O
200	Multifocal interferometric synthetic aperture microscopy. Optics Express, 2014, 22, 16606.	3.4	12
201	Stability in computed optical interferometric tomography (Part II): in vivo stability assessment. Optics Express, 2014, 22, 19314.	3.4	22
202	Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy. Optics Express, 2014, 22, 20138.	3.4	12
203	Optical parametrically gated microscopy in scattering media. Optics Express, 2014, 22, 22547.	3.4	4
204	High Resolution Phase-Sensitive Magnetomotive Optical Coherence Microscopy for Tracking Magnetic Microbeads and Cellular Mechanics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 25-31.	2.9	19
205	Coherent antiâ€Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. Journal of Biophotonics, 2014, 7, 9-22.	2.3	42
206	Static third-harmonic lines in widely variable fiber continuum generation. Physical Review A, 2014, 89, .	2.5	3
207	Real-time computed optical interferometric tomography. , 2014, , .		1
208	Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Science Translational Medicine, 2014, 6, 253rv2.	12.4	76
209	Volumetric full-range magnetomotive optical coherence tomography. Journal of Biomedical Optics, 2014, 19, 126001.	2.6	10
210	Stability in computed optical interferometric tomography (Part I): Stability requirements. Optics Express, 2014, 22, 19183.	3.4	37
211	<i>In vivo</i> multimodal microscopy for detecting boneâ€marrowâ€derived cell contribution to skin regeneration. Journal of Biophotonics, 2014, 7, 96-102.	2.3	15
212	Magnetomotive Optical Coherence Tomography for the Assessment of Atherosclerotic Lesions Using $\hat{l}\pm v\hat{l}^23$ Integrin-Targeted Microspheres. Molecular Imaging and Biology, 2014, 16, 36-43.	2.6	11
213	Introduction to the issue on biophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 4-7.	2.9	3
214	Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation. Translational Vision Science and Technology, 2014, 3, 10.	2.2	8
215	Differentiation of Ex Vivo Human Breast Tissue using Polarization-Sensitive Optical Coherence Tomography. , 2014, , .		1
216	Computed optical interferometric tomography for high-speed volumetric cellular imaging. , 2014, , .		2

#	Article	IF	CITATIONS
217	Development of an Intravascular Magnetomotive Optical Coherence Tomography System., 2014, , .		O
218	Electrically-Tunable Multi-Color Ultrafast Cherenkov Fiber Laser. , 2014, , .		0
219	Nonlinear Interferometric Vibrational Imaging and Spectroscopy. , 2014, , 273-294.		43
220	Coherent fiber supercontinuum for biophotonics. Laser and Photonics Reviews, 2013, 7, 628-645.	8.7	107
221	Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements. Hearing Research, 2013, 301, 193-200.	2.0	50
222	Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces. Water Research, 2013, 47, 2531-2542.	11.3	86
223	Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser. IEEE Photonics Technology Letters, 2013, 25, 892-895.	2.5	14
224	Real-time in vivo computed optical interferometric tomography. Nature Photonics, 2013, 7, 444-448.	31.4	81
225	Tailoring Hydrogel Adhesion to Polydimethylsiloxane Substrates Using Polysaccharide Glue. Angewandte Chemie - International Edition, 2013, 52, 6949-6952.	13.8	65
226	Three-dimensional Optical Coherence Tomography for Optical Biopsy of Lymph Nodes and Assessment of Metastatic Disease. Annals of Surgical Oncology, 2013, 20, 3685-3693.	1.5	32
227	Special Section Guest Editorial: Optical Elastography and Measurement of Tissue Biomechanics. Journal of Biomedical Optics, 2013, 18, 121501.	2.6	4
228	In vivo imaging of immune cell dynamics in skin in response to zinc-oxide nanoparticle exposure. Biomedical Optics Express, 2013, 4, 1817.	2.9	12
229	Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids. Optics Express, 2013, 21, 7139.	3.4	12
230	Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum. Optics Express, 2013, 21, 8269.	3.4	29
231	Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses. Optics Express, 2013, 21, 23188.	3.4	25
232	Imaging and Tracking of Bone Marrow-Derived Immune and Stem Cells. Methods in Molecular Biology, 2013, 1052, 57-76.	0.9	14
233	Magnetomotive optical coherence elastography for microrheology of biological tissues. Journal of Biomedical Optics, 2013, 18, 121504.	2.6	47
234	Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer. Proceedings of SPIE, 2013, , .	0.8	4

#	Article	IF	CITATIONS
235	Optical coherence tomography for the diagnosis of human otitis media. Proceedings of SPIE, 2013, , .	0.8	1
236	Dynamic method of optical coherence elastography in determining viscoelasticity of polymers and tissues., 2013, 2013, 117-20.		2
237	Stiffness-Modulated Water Retention and Neovascularization of Dermal Fibroblast-Encapsulating Collagen Gel. Tissue Engineering - Part A, 2013, 19, 1275-1284.	3.1	15
238	All-fiber femtosecond Cherenkov laser at visible wavelengths. , 2013, , .		0
239	SEGMENTATION AND CORRELATION OF OPTICAL COHERENCE TOMOGRAPHY AND X-RAY IMAGES FOR BREAST CANCER DIAGNOSTICS. Journal of Innovative Optical Health Sciences, 2013, 06, 1350015.	1.0	12
240	Long-term time-lapse multimodal intravital imaging of regeneration and bone-marrow-derived cell dynamics in skin. Technology, 2013, 01, 8-19.	1.4	20
241	The Gold Nanorod-Biology Interface: From Proteins to Cells to Tissue. Current Physical Chemistry, 2013, 3, 128-135.	0.2	5
242	All-fiber femtosecond Cherenkov source. EPJ Web of Conferences, 2013, 41, 10017.	0.3	0
243	Quantitative FRET Imaging to Visualize the Invasiveness of Live Breast Cancer Cells. PLoS ONE, 2013, 8, e58569.	2.5	31
244	Broadband Visible Fiber Sources Using 1550-nm-Converted Cherenkov Radiation with Gaussian-Like Spectra., 2013,,.		0
245	Multifocal Interferometric Synthetic Aperture Microscopy. , 2013, , .		0
246	All-fiber femtosecond Cherenkov radiation source. Optics Letters, 2012, 37, 2769.	3.3	36
247	Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. Optics Letters, 2012, 37, 2172.	3.3	58
248	Wave-Breaking Extended Coherent Fiber Supercontinuum Pulse Compression. Optics and Photonics News, 2012, 23, 55.	0.5	0
249	Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters. Optics Letters, 2012, 37, 1100.	3.3	12
250	Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system. Biomedical Optics Express, 2012, 3, 1149.	2.9	46
251	Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser. Optics Express, 2012, 20, 1113.	3.4	49
252	Guide-star-based computational adaptive optics for broadband interferometric tomography. Applied Physics Letters, 2012, 101, 221117.	3.3	39

#	Article	IF	Citations
253	Noninvasive in vivo optical detection of biofilm in the human middle ear. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9529-9534.	7.1	109
254	Multimodal In Vivo Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1280-1286.	2.9	40
255	Multimodal Nonlinear Microscopy by Shaping a Fiber Supercontinuum From 900 to 1160 nm. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1209-1214.	2.9	36
256	Introduction to the Issue on Biophotonicsâ€"Part 1. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1039-1041.	2.9	0
257	Guest Editorial Introduction to the Issue on Biophotonicsâ€"Part 2. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1267-1269.	2.9	0
258	Coherent fiber supercontinuum laser for nonlinear biomedical imaging. , 2012, , .		4
259	Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7175-7180.	7.1	179
260	Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin. Journal of Biophotonics, 2012, 5, 437-448.	2.3	37
261	Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source. Applied Physics B: Lasers and Optics, 2012, 106, 379-384.	2.2	10
262	Targeted Multifunctional Multimodal Protein-Shell Microspheres as Cancer Imaging Contrast Agents. Molecular Imaging and Biology, 2012, 14, 17-24.	2.6	49
263	Modern Trends in Imaging V: Optical Coherence Tomography for Rapid Tissue Screening and Directed Histological Sectioning. Analytical Cellular Pathology, 2012, 35, 129-143.	1.4	16
264	Primary Care Imaging using Optical Coherence Tomography for Advanced Point-of-Care Diagnostics. , 2012, , .		0
265	Investigation of Bacterial Biofilms in the Human Middle Ear using OCT Techniques and Acoustic Measurements. , 2012 , , .		0
266	High-speed Interferometric Synthetic Aperture Microscopy on a Graphics Processing Unit., 2012,,.		0
267	Magnetomotive contrast in optical coherence tomography for detecting early-stage atherosclerosis using targeted microspheres. , 2012, , .		0
268	Broadband optical interferometric tomography with computational adaptive optics using $\hat{a} \in guide$ stars $\hat{a} \in M$., 2012, , .		0
269	Interferometric Synthetic Aperture Microscopy with Computational Adaptive Optics for High-Resolution Tomography of Scattering Tissue. , 2012, , .		1
270	Optical coherence tomography for rapid tissue screening and directed histological sectioning. Analytical Cellular Pathology, 2012, 35, 129-43.	1.4	3

#	Article	IF	CITATIONS
271	Visualising Middle Ear Biofilms in Otitis Media: a new benchmark for successful treatment. ENT & Audiology News, 2012, 21, 94-95.	0.0	О
272	Full-range k-domain linearization in spectral-domain optical coherence tomography. Applied Optics, 2011, 50, 1158.	2.1	63
273	In vivo three-dimensional optical coherence elastography. Optics Express, 2011, 19, 6623.	3.4	167
274	Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices. Optics Letters, 2011, 36, 2281.	3.3	46
275	Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus. Optics Letters, 2011, 36, 2315.	3.3	20
276	Novel method for non-invasive induction of a middle-ear biofilm in the rat. Vaccine, 2011, 29, 1628-1633.	3.8	24
277	Magnetomotive optical coherence microscopy for cell dynamics and biomechanics. Proceedings of SPIE, 2011, , .	0.8	2
278	Low power real time signal processing engine for optical coherence tomography systems using multi-core digital signal processor. Proceedings of SPIE, 2011, , .	0.8	1
279	Magnetomotive molecular probes for targeted contrast enhancement and therapy. Proceedings of SPIE, $2011, \ldots$	0.8	1
280	The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy. , $2011,$, .		5
281	Molecular histopathology by nonlinear interferometric vibrational imaging. Proceedings of SPIE, 2011, , \cdot	0.8	1
282	Nonlinear interferometric vibrational imaging for fast label-free visualization of molecular domains in skin. Analytical and Bioanalytical Chemistry, 2011, 400, 2817-2825.	3.7	12
283	In Vivo Multiphoton Microscopy for Investigating Biomechanical Properties of Human Skin. Cellular and Molecular Bioengineering, 2011, 4, 231-238.	2.1	24
284	Magnetomotive Molecular Nanoprobes. Current Medicinal Chemistry, 2011, 18, 2103-2114.	2.4	21
285	Long-term time-lapse multimodal microscopy for tracking cell dynamics in live tissue. Proceedings of SPIE, $2011, \ldots$	0.8	2
286	Handheld Optical Coherence Tomography Scanner for Primary Care Diagnostics. IEEE Transactions on Biomedical Engineering, 2011, 58, 741-744.	4.2	130
287	Magnetomotive Molecular Nanoprobes for Optical Biomedical Imaging and Diagnostics. , 2011, , .		0
288	Interferometric synthetic aperture microscopy: asymptotics and corrections., 2011,,.		0

#	Article	IF	CITATIONS
289	Fourier Transform Light Scattering (FTLS) of Cells and Tissues. Journal of Computational and Theoretical Nanoscience, 2010, 7, 2501-2511.	0.4	22
290	Biomechanical Properties of <i>In Vivo</i> Human Skin From Dynamic Optical Coherence Elastography. IEEE Transactions on Biomedical Engineering, 2010, 57, 953-959.	4.2	369
291	Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 691-697.	2.9	19
292	High-Speed Nonlinear Interferometric Vibrational Imaging of Biological Tissue With Comparison to Raman Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 824-832.	2.9	18
293	Introduction to the Special Issue on Biophotonicsâ€"Part 1. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 475-477.	2.9	1
294	Introduction to the Special Issue on Biophotonicsâ€"Part 2. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 703-705.	2.9	1
295	Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer. IEEE Engineering in Medicine and Biology Magazine, 2010, 29, 63-70.	0.8	75
296	Optical arbitrary waveform characterization using linear spectrograms. Optics Communications, 2010, 283, 3017-3021.	2.1	2
297	Lymphatic Biodistribution of Polylactide Nanoparticles. Molecular Imaging, 2010, 9, 7290.2010.00012.	1.4	22
298	Versatile photonic crystal fiber-enabled source for multi-modality biophotonic imaging beyond conventional multiphoton microscopy. Proceedings of SPIE, 2010, , .	0.8	8
299	DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW. Journal of Innovative Optical Health Sciences, 2010, 03, 221-233.	1.0	56
300	In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8085-8090.	7.1	113
301	Numerical analysis of gradient index lens–based optical coherence tomography imaging probes. Journal of Biomedical Optics, 2010, 15, 066027.	2.6	45
302	Molecular Histopathology by Spectrally Reconstructed Nonlinear Interferometric Vibrational Imaging. Cancer Research, 2010, 70, 9562-9569.	0.9	47
303	Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography. Physics in Medicine and Biology, 2010, 55, 1189-1201.	3.0	63
304	Microscopic Imaging and Spectroscopy with Scattered Light. Annual Review of Biomedical Engineering, 2010, 12, 285-314.	12.3	114
305	Characterization and Analysis of Relative Intensity Noise in Broadband Optical Sources for Optical Coherence Tomography. IEEE Photonics Technology Letters, 2010, 22, 1057-1059.	2.5	71
306	High Speed Nonlinear Interferometric Vibrational Analysis of Lipids by Spectral Decomposition. Analytical Chemistry, 2010, 82, 3812-3818.	6.5	30

#	Article	IF	Citations
307	Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear. Biomedical Optics Express, 2010, 1, 1104.	2.9	50
308	Sonification of optical coherence tomography data and images. Optics Express, 2010, 18, 9934.	3.4	15
309	Dynamic spectral-domain optical coherence elastography for tissue characterization. Optics Express, 2010, 18, 14183.	3.4	69
310	Spectroscopic optical coherence elastography. Optics Express, 2010, 18, 25519.	3.4	83
311	Scalar generalized nonlinear SchrĶdinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources. Optics Express, 2010, 18, 27872.	3.4	28
312	Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography. Optics Letters, 2010, 35, 1683.	3.3	29
313	Correction of coherence gate curvature in high numerical aperture optical coherence imaging. Optics Letters, 2010, 35, 3120.	3.3	30
314	Imaging and Analysis of Three-Dimensional Cell Culture Models. Methods in Molecular Biology, 2010, 591, 211-227.	0.9	82
315	Optical Coherence Tomography for Cancer Detection. , 2010, , 209-250.		9
316	Multimodality microscopy of cell dynamics in three-dimensional engineered and natural tissues. , 2009, , .		2
317	Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber. Applied Physics Letters, 2009, 94, 101109.	3.3	21
318	Optical pulse shaping for selective excitation of coherent molecular vibrations by stimulated Raman scattering. , 2009, , .		2
319	Intraoperative Evaluation of Breast Tumor Margins with Optical Coherence Tomography. Cancer Research, 2009, 69, 8790-8796.	0.9	346
320	Chirped four-wave mixing in the largely normal dispersion regime from femtosecond pulse-pumped photonic crystal fiber. , 2009, , .		0
321	Clinical Feasibility of Microscopically-Guided Breast Needle Biopsy Using a Fiber-Optic Probe with Computer-Aided Detection. Technology in Cancer Research and Treatment, 2009, 8, 315-321.	1.9	35
322	Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy. Journal of Biomedical Optics, 2009, 14, 034019.	2.6	16
323	Imaging engineered tissues using structural and functional optical coherence tomography. Journal of Biophotonics, 2009, 2, 643-655.	2.3	65
324	Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. Journal of Materials Chemistry, 2009, 19, 6407.	6.7	82

#	Article	IF	CITATIONS
325	Emergence of self-organized long-period fiber gratings in supercontinuum-generating optical fibers. Optics Letters, 2009, 34, 668.	3.3	6
326	Optical properties of tissues quantified by Fourier-transform light scattering. Optics Letters, 2009, 34, 1372.	3.3	68
327	Molecular identification by generating coherence between molecular normal modes using stimulated Raman scattering. Optics Letters, 2009, 34, 1756.	3.3	7
328	Acoustomotive optical coherence elastography for measuring material mechanical properties. Optics Letters, 2009, 34, 2894.	3.3	56
329	Measurements of Biomechanics by Dynamic Optical Coherence Elastography. Optics and Photonics News, 2009, 20, 18.	0.5	2
330	Design of Matched Optical Pulses for Coherent Raman Imaging. Optics and Photonics News, 2009, 20, 31.	0.5	1
331	Partially coherent illumination in full-field interferometric synthetic aperture microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 376.	1.5	21
332	Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography. Optics Express, 2009, 17, 8125.	3.4	43
333	Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation. Optics Express, 2009, 17, 9858.	3.4	63
334	Detecting intrinsic scattering changes †correlated to neuron action potentials †using optical coherence imaging. Optics Express, 2009, 17, 13447.	3 . 4	44
335	Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers. Optics Express, 2009, 17, 17983.	3.4	19
336	Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials. Optics Express, 2009, 17, 23114.	3 . 4	100
337	Expression Order of <i> Alpha-v < /i > and <i> Beta-3 < /i > Integrin Subunits in the <i> N < /i > - Methyl- <i> N < /i > - Nitrosourea-Induced Rat Mammary Tumor Model. Cancer Investigation, 2009, 27, 496-503.</i></i></i></i>	1.3	4
338	Fc-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED MOLECULAR TARGETING. Journal of Innovative Optical Health Sciences, 2009, 02, 387-396.	1.0	20
339	Validation of nonlinear interferometric vibrational imaging as a molecular OCT technique by the use of Raman microscopy. Proceedings of SPIE, 2009, , .	0.8	O
340	Dynamic optical coherence elastography and applications. Proceedings of SPIE, 2009, , .	0.8	2
341	Dynamic Optical Coherence Elastography and Applications. , 2009, , .		1
342	Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures. Physical Review Letters, 2008, 101, 238102.	7.8	137

#	Article	IF	Citations
343	Real-Time Interferometric Synthetic Aperture Microscopy for Clinical Applications. Optics and Photonics News, 2008, 19, 32.	0.5	2
344	Group refractive index reconstruction with broadband interferometric confocal microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 1156.	1.5	7
345	Localized waveguide formation in germanosilicate fiber transmitting femtosecond IR pulses. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 274.	2.1	3
346	Real-time interferometric synthetic aperture microscopy. Optics Express, 2008, 16, 2555.	3.4	69
347	Anomalous bending effect in photonic crystal fibers. Optics Express, 2008, 16, 5617.	3.4	0
348	Optical micro-scale mapping of dynamic biomechanical tissue properties. Optics Express, 2008, 16, 11052.	3.4	127
349	Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. Optics Express, 2008, 16, 11525.	3.4	101
350	Plastinated tissue samples as three-dimensional models for optical instrument characterization. Optics Express, 2008, 16, 16272.	3.4	9
351	Plasmon-resonant gold nanorods provide spectroscopic OCT contrast in excised human breast tumors. , 2008, , .		12
352	Spectral-domain magnetomotive OCT imaging of magnetic nanoparticle biodistribution. , 2008, , .		2
353	High-speed processing architecture for spectral-domain optical coherence microscopy. Journal of Biomedical Optics, 2008, 13, 044013.	2.6	8
354	Interferometric Synthetic Aperture Microscopy., 2008,,.		1
355	Coherent optical imaging and guided interventions in breast cancer: translating technology into clinical applications. , 2008, , .		4
356	Observation of the photoscattering effect from supercontinuum-generating germanosilicate fiber. Proceedings of SPIE, 2008, , .	0.8	0
357	Modeling and measurement of tissue elastic moduli using optical coherence elastography. Proceedings of SPIE, 2008, , .	0.8	7
358	Magnetic protein microspheres as dynamic contrast agents for magnetomotive optical coherence tomography. , 2008, , .		3
359	Nonlinear interferometric vibrational imaging of biological tissue. Proceedings of SPIE, 2008, , .	0.8	1
360	Interferometric synthetic aperture microscopy: tissue structure inferred by computed imaging techniques. Proceedings of SPIE, 2008, , .	0.8	0

#	Article	IF	Citations
361	Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy. Sensors, 2008, 8, 3903-3931.	3.8	41
362	Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. Optics Express, 2008, 16, 11525-39.	3.4	70
363	Interferometric Synthetic Aperture Microscopy: Physics-Based Image Reconstruction from Optical Coherence Tomography Data., 2007,,.		0
364	Backscattering albedo contrast in OCT using plasmon-resonant gold nanorods. , 2007, 6429, 298.		1
365	Comment on "In vivocancer diagnosis with optical spectroscopy and acoustically induced blood stasis using a murine Mca35 model,― Medical Physics, 2007, 34, 1623.	3.0	0
366	Portable real-time optical coherence tomography system for intraoperative imaging and staging of breast cancer. , 2007, , .		8
367	Real-time inverse scattering for optical coherence tomography. , 2007, , .		2
368	High numerical aperture full-field optical coherence tomography with space-invariant resolution without scanning the focus. , 2007, , .		2
369	Needle-probe system for the measurement of tissue refractive index. , 2007, , .		0
370	Phase-resolved spectral-domain magnetomotive optical coherence tomography., 2007,,.		3
371	Needle-based refractive index measurement using low-coherence interferometry. Optics Letters, 2007, 32, 385.	3.3	46
372	Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy. Optics Letters, 2007, 32, 1441.	3.3	27
373	Stabilization of continuum generation from normally dispersive nonlinear optical fibers for a tunable broad bandwidth source for optical coherence tomography. Optics Letters, 2007, 32, 2037.	3.3	17
374	Inverse scattering for frequency-scanned full-field optical coherence tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 1034.	1.5	58
375	Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 2527.	1.5	52
376	Needle-based reflection refractometry of scattering samples using coherence-gated detection. Optics Express, 2007, 15, 4787.	3.4	26
377	Multimodal Biomedical Imaging with Asymmetric Single-Walled Carbon Nanotube/Iron Oxide Nanoparticle Complexes. Nano Letters, 2007, 7, 861-867.	9.1	268
378	Optical coherence tomography: a review of clinical development from bench to bedside. Journal of Biomedical Optics, 2007, 12, 051403.	2.6	440

#	Article	IF	Citations
379	Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Microscopy Research and Technique, 2007, 70, 361-371.	2.2	26
380	Interferometric synthetic aperture microscopy. Nature Physics, 2007, 3, 129-134.	16.7	360
381	Spectroscopic Optical Coherence Tomography and Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1629-1640.	2.9	71
382	Nonlinear Interferometric Vibrational Imaging. ACS Symposium Series, 2007, , 236-258.	0.5	1
383	Polarimetric Interferometric Synthetic Aperture Microscopy: Vectorial Computed Imaging from Optical Coherence Tomography Data., 2007,,.		0
384	Intraoperative Needle-based Refractive Index Measurement of Ex Vivo Human Breast Tissue., 2007,,.		0
385	Intraoperative Optical Biopsy of Breast Cancer. , 2007, , .		0
386	Interferometric synthetic aperture microscopy. , 2007, , .		2
387	Tumor Targeting by Surface-Modified Protein Microspheres. Journal of the American Chemical Society, 2006, 128, 3472-3473.	13.7	118
388	Advanced Spectroscopic Coherence Tomography. , 2006, , .		0
389	Refractive index of carcinogen-induced rat mammary tumours. Physics in Medicine and Biology, 2006, 51, 2165-2177.	3.0	70
390	Spectroscopic spectral-domain optical coherence microscopy. Optics Letters, 2006, 31, 1079.	3.3	104
391	High-spectral-resolution coherent anti-Stokes Raman scattering with interferometrically detected broadband chirped pulses. Optics Letters, 2006, 31, 1543.	3.3	31
392	Inverse scattering for high-resolution interferometric microscopy. Optics Letters, 2006, 31, 3585.	3.3	52
393	Inverse scattering for optical coherence tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 1027.	1.5	112
394	Inverse scattering for rotationally scanned optical coherence tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 2433.	1.5	19
395	In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. Optics Express, 2006, 14, 1547.	3.4	81
396	Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optics Express, 2006, 14, 6724.	3.4	166

#	Article	IF	CITATIONS
397	Optical coherence tomography of cell dynamics in three-dimensional tissue models. Optics Express, 2006, 14, 7159.	3.4	86
398	Multi-modality imaging of structure and function combining spectral-domain optical coherence and multiphoton microscopy., 2006, 6079, 226.		1
399	Detection of ultrastructural changes in genetically altered and exercised skeletal muscle using PS-OCT., 2006,,.		0
400	High-resolution in vivo nanoparticle imaging using magnetomotive optical coherence tomography. , 2006, , .		2
401	Demonstration of inverse scattering in optical coherence tomography., 2006, 6079, 312.		1
402	Light-scattering spectroscopic optical coherence tomography for differentiating cells in 3D cell culture., 2006, 6088, 26.		6
403	Advances in Contrast Enhancement for Optical Coherence Tomography. , 2006, 2006, 121-4.		6
404	High-resolution three-dimensional imaging of biofilm development using optical coherence tomography. Journal of Biomedical Optics, 2006, 11, 034001.	2.6	97
405	Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. Journal of Biomedical Optics, 2006, 11, 021014.	2.6	70
406	Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. Journal of Biomedical Optics, 2006, 11, 054015.	2.6	99
407	Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. Applied Physics Letters, 2006, 88, 053901.	3.3	69
408	Optical Coherence Elastography of Engineered and Developing Tissue. Tissue Engineering, 2006, 12, 63-73.	4.6	126
409	Human Breast Cancer Identification by K-Space Analysis of Optical Coherence Tomography Images. , 2006, , .		2
410	An inverse scattering method for catheter-based optical coherence tomography. , 2006, , .		1
411	Retrieval of a Coherent anti-Stokes Raman Spectrum Using a Broadband Chirped Pump Pulse. , 2006, , .		0
412	Three-Dimensional Visualization of Lymph Node Morphology using OCT., 2006,,.		0
413	Multimodality Microscopy for Structural and Functional Imaging of Three-Dimensional Cell Dynamics. , 2006, , .		0
414	Refractive Index of Rat Mammary Tumor Tissue. , 2006, , .		0

#	Article	IF	Citations
415	Optical Coherence Elastography of Engineered and Developing Tissue. Tissue Engineering, 2006, .	4.6	O
416	Optical coherence tomography of cell dynamics in three-dimensional engineered tissues. , 2005, 5699, 102.		1
417	Molecularly sensitive optical ranging using nonlinear interferometric vibrational imaging. , 2005, , .		0
418	Gaussian beam deconvolution in optical coherence tomography., 2005,,.		2
419	A least-square fitting algorithm for separating absorption and scattering profiles in spectroscopic optical coherence tomography. , 2005, , .		0
420	Optical coherence tomography of cell dynamics in three-dimensional engineered tissues. , 2005, , .		1
421	Nonlinear interferometric vibrational imaging: optical ranging and spatial localization of CARS. , 2005, , .		O
422	Evaluation of Microfluidic Biosensor Development Using Microscopic Analysis of Molecular Beacon Hybridization Kinetics. Biomedical Microdevices, 2005, 7, 7-12.	2.8	15
423	Optical probes and techniques for molecular contrast enhancement in coherence imaging. Journal of Biomedical Optics, 2005, 10, 041208.	2.6	125
424	Optical coherence elastography of developing biological tissues. , 2005, , .		2
425	Optical Biopsy of Lymph Node Morphology using Optical Coherence Tomography. Technology in Cancer Research and Treatment, 2005, 4, 539-547.	1.9	76
426	Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. IEEE Transactions on Image Processing, 2005, 14, 1254-1264.	9.8	61
427	Comparative performance analysis of time–frequency distributions for spectroscopic optical coherence tomography. Applied Optics, 2005, 44, 1813.	2.1	49
428	Speckle reduction by I-divergence regularization in optical coherence tomography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 2366.	1.5	79
429	Wavelength-dependent scattering in spectroscopic optical coherence tomography. Optics Express, 2005, 13, 5450.	3.4	90
430	Magnetomotive contrast for in vivo optical coherence tomography. Optics Express, 2005, 13, 6597.	3.4	172
431	Molecularly sensitive optical coherence tomography. Optics Letters, 2005, 30, 495.	3.3	46
432	Imaging magnetically labeled cells with magnetomotive optical coherence tomography. Optics Letters, 2005, 30, 747.	3.3	121

#	Article	IF	CITATIONS
433	Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system. , 2005, , .		13
434	Nonlinear Interferometric Vibrational Imaging with Differentiation of Resonant CARS from Nonresonant Four-Wave Mixing Processes. , 2004, , TuB3.		0
435	Imaging of mixing dynamics in micromixers using microscopy and optical coherence tomography. , 2004, , .		0
436	Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes. Applied Physics Letters, 2004, 85, 5787-5789.	3.3	53
437	Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images. Journal of Biomedical Optics, 2004, 9, 1281.	2.6	13
438	Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7516-7521.	7.1	74
439	Retinal response of Macaca mulatta to picosecond laser pulses of varying energy and spot size. Journal of Biomedical Optics, 2004, 9, 1288.	2.6	5
440	Real-Time Digital Signal Processing-Based Optical Coherence Tomography and Doppler Optical Coherence Tomography. IEEE Transactions on Biomedical Engineering, 2004, 51, 186-190.	4.2	32
441	Optical Coherence Tomography: Feasibility for Basic Research and Image-guided Surgery of Breast Cancer. Breast Cancer Research and Treatment, 2004, 84, 85-97.	2.5	227
442	Nonlinear Interferometric Vibrational Imaging. Physical Review Letters, 2004, 92, 123905.	7.8	118
443	Structural and Functional Optical Imaging of Three-Dimensional Engineered Tissue Development. Tissue Engineering, 2004, 10, 1747-1756.	4.6	60
444	Nonlinear optical contrast enhancement for optical coherence tomography. Optics Express, 2004, 12, 331.	3.4	95
445	Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm. Optics Express, 2004, 12, 4790.	3.4	71
446	Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Optics Letters, 2004, 29, 1647.	3.3	148
447	Magnetic contrast agents for optical coherence tomography., 2004,,.		9
448	Real-time digital design for an optical coherence tomography acquisition and processing system. , 2004, , .		2
449	Functional optical coherence tomography of stimulated and spontaneous scattering changes in neural tissue. , 2004, , .		0
450	Nonlinear interferometric vibrational imaging of molecular species. , 2004, 5321, 149.		1

#	Article	IF	CITATIONS
451	Structural and functional imaging of engineered tissue development using an integrated OCT and multiphoton microscope. , 2004, 5319, 1.		0
452	Optical coherence tomography of breast cancer: feasibility for surgical guidance. , 2004, , .		0
453	Functional optical coherence tomography of neurophysiology. , 2004, , .		O
454	Optical coherence tomography: Technology and applications for neuroimaging. Psychophysiology, 2003, 40, 529-541.	2.4	80
455	Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media. Applied Optics, 2003, 42, 204.	2.1	78
456	Autofocus algorithm for dispersion correction in optical coherence tomography. Applied Optics, 2003, 42, 3038.	2.1	67
457	Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner. Applied Optics, 2003, 42, 4606.	2.1	40
458	Projected index computed tomography. Optics Letters, 2003, 28, 701.	3.3	54
459	Functional optical coherence tomography for detecting neural activity through scattering changes. Optics Letters, 2003, 28, 1218.	3.3	88
460	Engineered microsphere contrast agents for optical coherence tomography. Optics Letters, 2003, 28, 1546.	3.3	234
461	Use of DNA and Peptide Nucleic Acid Molecular Beacons for Detection and Quantification of rRNA in Solution and in Whole Cells. Applied and Environmental Microbiology, 2003, 69, 5673-5678.	3.1	66
462	Optical manipulation of silicon microparticles in biological environments. , 2003, , .		1
463	Optical characterization of contrast agents for optical coherence tomography., 2003, 4967, 129.		6
464	Use of molecular beacons for the detection of bacteria in microfluidic devices., 2003, 4982, 170.		0
465	Molecular species-sensitive optical coherence tomography using coherent anti-stokes Raman scattering spectroscopy., 2003, 4956, 9.		3
466	Distortion corrected imaging using projected index computed tomography., 2003,,.		0
467	Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. Optics Letters, 2002, 27, 2010.	3.3	129
468	Magnetically-inducible optical contrast agents for optical coherence tomography. , 2002, , .		0

#	Article	IF	CITATIONS
469	Real-Time Optical Coherence Tomography for Minimally Invasive Imaging of Prostate Ablation. Computer Aided Surgery, 2001, 6, 94-103.	1.8	43
470	Surgical Guidance and Intervention., 2001,, 613-647.		2
471	Optical Coherence Tomography and Developmental Biology. , 2001, , 505-538.		0
472	Real-time optical coherence tomography for minimally invasive imaging of prostate ablation. Computer Aided Surgery, 2001, 6, 94-103.	1.8	14
473	Optical Coherence Tomography Imaging in Developmental Biology. , 2000, 135, 217-233.		19
474	Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. American Journal of Cardiology, 2000, 85, 641-644.	1.6	151
475	Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. Journal of Gastroenterology, 2000, 35, 87-92.	5.1	154
476	Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus. Endoscopy, 2000, 32, 921-930.	1.8	253
477	Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. Neoplasia, 2000, 2, 9-25.	5.3	817
478	High resolution imaging of endometriosis and ovarian carcinoma with optical coherence tomography: feasibility for laparoscopic-based imaging. BJOG: an International Journal of Obstetrics and Gynaecology, 1999, 106, 1071-1077.	2.3	49
479	Optical imaging technology in minimally invasive surgery. Surgical Endoscopy and Other Interventional Techniques, 1999, 13, 718-722.	2.4	51
480	Comparison of Optical Coherence Tomography Imaging of Cataracts With Histopathology. Journal of Biomedical Optics, 1999, 4, 450.	2.6	16
481	High-Resolution Optical Coherence Tomography-Guided Laser Ablation of Surgical Tissue. Journal of Surgical Research, 1999, 82, 275-284.	1.6	136
482	HIGH-RESOLUTION IMAGING OF GYNECOLOGIC NEOPLASMS USING OPTICAL COHERENCE TOMOGRAPHY. Obstetrics and Gynecology, 1999, 93, 135-139.	2.4	105
483	High-resolution in-vivo intra-arterial imaging with optical coherence tomography. , 1999, 3590, 324.		0
484	<title>Endoscopic optical coherence tomography imaging for surgical diagnostics and guidance in
the gastrointestinal tract</title> ., 1999, 3595, 158.		0
485	<title>High-resolution imaging of neoplastic lesions using optical coherence tomography</title> ., 1999,,.		0
486	Optical biopsy in human pancreatobiliary tissue using optical coherence tomography. Digestive Diseases and Sciences, 1998, 43, 1193-1199.	2.3	64

#	Article	IF	CITATIONS
487	In vivo cellular optical coherence tomography imaging. Nature Medicine, 1998, 4, 861-865.	30.7	285
488	Optical Biopsy with Optical Coherence Tomographya. Annals of the New York Academy of Sciences, 1998, 838, 68-74.	3.8	43
489	New Technology for High-Speed and High-Resolution Optical Coherence Tomographya. Annals of the New York Academy of Sciences, 1998, 838, 95-107.	3.8	79
490	Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography. Fertility and Sterility, 1998, 70, 155-158.	1.0	46
491	Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography Radiology, 1998, 208, 81-86.	7.3	127
492	Optical Coherence Tomography for Neurosurgical Imaging of Human Intracortical Melanoma. Neurosurgery, 1998, 43, 834-841.	1.1	126
493	Optical Coherence Tomographic Imaging of In Vivo Cellular Dynamics. , 1998, , .		1
494	Two and Three Dimensional Imaging of Normal and Osteoarthritic Cartilage Microstructure with Optical Coherence Tomography. , $1998, , .$		0
495	Optical Coherence Tomography using Femtosecond Lasers. Springer Series in Chemical Physics, 1998, , 150-152.	0.2	0
496	In-Vivo Catheter-Based Imaging with Optical Coherence Tomography. , 1998, , .		1
497	<title>Endoscopic optical coherence tomography</title> ., 1997,,.		1
498	<title>Mode-locked solid state laser sources for optical coherence tomography</title> ., 1997,,.		3
499	Argon Laser Retinal Lesions Evaluated In Vivo by Optical Coherence Tomography. American Journal of Ophthalmology, 1997, 123, 188-198.	3.3	75
500	In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography. Science, 1997, 276, 2037-2039.	12.6	1,365
501	Optical Biopsy with Optical Coherence Tomography: Feasibility for Surgical Diagnostics. Journal of Surgical Research, 1997, 71, 32-40.	1.6	119
502	Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4256-4261.	7.1	225
503	Scanning single-mode fiber optic catheter–endoscope for optical coherence tomography: erratum. Optics Letters, 1996, 21, 912.	3.3	17
504	Investigation of Developing Embryonic Morphology Using Optical Coherence Tomography. Developmental Biology, 1996, 177, 54-63.	2.0	162

#	Article	IF	CITATIONS
505	Imaging of coronary artery microstructure (in vitro) with optical coherence tomography. American Journal of Cardiology, 1996, 77, 92-93.	1.6	156
506	Imaging developing neural morphology using optical coherence tomography. Journal of Neuroscience Methods, 1996, 70, 65-72.	2.5	92
507	Catheter-Based Optical Imaging of a Human Coronary Artery. Circulation, 1996, 94, 3013-3013.	1.6	97
508	New noninvasive imaging technique for cataract evaluation in the rhesus monkey. , 1995, , .		2
509	Optical biopsy and imaging using optical coherence tomography. Nature Medicine, 1995, 1, 970-972.	30.7	844
510	High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al_2O_3 laser source. Optics Letters, 1995, 20, 1486.	3.3	315
511	A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment. IEEE Journal of Quantum Electronics, 1995, 31, 2250-2257.	1.9	119
512	A flexible perforated microelectrode array for extended neural recordings. IEEE Transactions on Biomedical Engineering, 1992, 39, 37-42.	4.2	109
513	flimview: A software framework to handle, visualize and analyze FLIM data. F1000Research, 0, 9, 574.	1.6	3
514	Tracking the binding of multiâ€functional fluorescent tags for Alzheimer's disease using quantitative multiphoton microscopy. Journal of Biophotonics, 0, , .	2.3	0
515	Multimodal Handheld Probe for Characterizing Otitis Media $\hat{a} \in$ " Integrating Raman Spectroscopy and Optical Coherence Tomography. Frontiers in Photonics, 0, 3, .	2.4	4