List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6886649/publications.pdf

Version: 2024-02-01

FLENA V RATRAKOVA

#	Article	IF	CITATIONS
1	Biodistribution of Biomimetic Drug Carriers, Mononuclear Cells, and Extracellular Vesicles, in Nonhuman Primates. Advanced Biology, 2022, 6, e2101293.	2.5	7
2	Using Extracellular Vesicles Released by GDNF-Transfected Macrophages for Therapy of Parkinson Disease. Cells, 2022, 11, 1933.	4.1	5
3	PEC-Free Polyion Complex Nanocarriers for Brain-Derived Neurotrophic Factor. Pharmaceutics, 2022, 14, 1391.	4.5	2
4	Targeting Beclin1 as an Adjunctive Therapy against HIV Using Mannosylated Polyethylenimine Nanoparticles. Pharmaceutics, 2021, 13, 223.	4.5	5
5	Post-COVID Syndrome and Tachycardia: Theoretical Base and Treatment Experience. Rational Pharmacotherapy in Cardiology, 2021, 17, 256-262.	0.8	15
6	Brain Targeting and Toxicological Assessment of the Extracellular Vesicle-Packaged Antioxidant Catalase-SKL Following Intranasal Administration in Mice. Neurotoxicity Research, 2021, 39, 1418-1429.	2.7	11
7	Extracellular Vesicles as Drug Delivery System for the Treatment of Neurodegenerative Disorders: Optimization of the Cell Source. Advanced NanoBiomed Research, 2021, 1, 2100064.	3.6	13
8	Mannosylated Cationic Copolymers for Gene Delivery to Macrophages. Macromolecular Bioscience, 2021, 21, e2000371.	4.1	12
9	Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. Journal of NeuroImmune Pharmacology, 2020, 15, 487-500.	4.1	125
10	Eradication of cancer stem cells in triple negative breast cancer using doxorubicin/pluronic polymeric micelles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102124.	3.3	43
11	Extracellular Vesicle-Based Therapeutics: Preclinical and Clinical Investigations. Pharmaceutics, 2020, 12, 1171.	4.5	60
12	Extracellular Vesicles in HIV, Drug Abuse, and Drug Delivery. Journal of NeuroImmune Pharmacology, 2020, 15, 387-389.	4.1	7
13	Genetically modified macrophages accomplish targeted gene delivery to the inflamed brain in transgenic Parkin Q311X(A) mice: importance of administration routes. Scientific Reports, 2020, 10, 11818.	3.3	12
14	Extracellular Vesicles as Drug Carriers for Enzyme Replacement Therapy to Treat CLN2 Batten Disease: Optimization of Drug Administration Routes. Cells, 2020, 9, 1273.	4.1	22
15	Targeted Delivery of siRNA Lipoplexes to Cancer Cells Using Macrophage Transient Horizontal Gene Transfer. Advanced Science, 2019, 6, 1900582.	11.2	57
16	GDNF-expressing macrophages restore motor functions at a severe late-stage, and produce long-term neuroprotective effects at an early-stage of Parkinson's disease in transgenic Parkin Q311X(A) mice. Journal of Controlled Release, 2019, 315, 139-149.	9.9	25
17	TPP1 Delivery to Lysosomes with Extracellular Vesicles and their Enhanced Brain Distribution in the Animal Model of Batten Disease. Advanced Healthcare Materials, 2019, 8, e1801271.	7.6	83
18	Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 195-204.	3.3	469

#	Article	IF	CITATIONS
19	Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials, 2017, 140, 79-87.	11.4	121
20	Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Scientific Reports, 2017, 7, 1862.	3.3	78
21	Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials, 2017, 142, 1-12.	11.4	411
22	Development and regulation of exosomeâ€based therapy products. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 744-757.	6.1	61
23	Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 655-664.	3.3	991
24	Preparation and characterization of anti-HIV nanodrug targeted to microfold cell of gut-associated lymphoid tissue. International Journal of Nanomedicine, 2015, 10, 5819.	6.7	25
25	Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections. Frontiers in Microbiology, 2015, 6, 948.	3.5	15
26	Exosomes as drug delivery vehicles for Parkinson's disease therapy. Journal of Controlled Release, 2015, 207, 18-30.	9.9	1,363
27	Using exosomes, naturally-equipped nanocarriers, for drug delivery. Journal of Controlled Release, 2015, 219, 396-405.	9.9	760
28	GDNF-Transfected Macrophages Produce Potent Neuroprotective Effects in Parkinson's Disease Mouse Model. PLoS ONE, 2014, 9, e106867.	2.5	111
29	Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins. Nanomedicine, 2014, 9, 1403-1422.	3.3	78
30	Specific Transfection of Inflamed Brain by Macrophages: A New Therapeutic Strategy for Neurodegenerative Diseases. PLoS ONE, 2013, 8, e61852.	2.5	124
31	Blood-borne macrophage–neural cell interactions hitchhike on endosome networks for cell-based nanozyme brain delivery. Nanomedicine, 2012, 7, 815-833.	3.3	51
32	Neuronal uptake and subcellular localization of functional nanoformulated copper/zinc superoxide dismutase (SOD nano). FASEB Journal, 2012, 26, .	0.5	0
33	Cell-mediated drug delivery. Expert Opinion on Drug Delivery, 2011, 8, 415-433.	5.0	274
34	Polyelectrolyte complex optimization for macrophage delivery of redox enzyme nanoparticles. Nanomedicine, 2011, 6, 25-42.	3.3	54
35	Active Targeted Macrophage-mediated Delivery of Catalase to Affected Brain Regions in Models of Parkinson?s Disease. Journal of Nanomedicine & Nanotechnology, 2011, 01, .	1.1	58
36	Research Highlights. Nanomedicine, 2011, 6, 1491-1494.	3.3	2

#	Article	IF	CITATIONS
37	Cell-mediated transfer of catalase nanoparticles from macrophages to brain endothelial, glial and neuronal cells. Nanomedicine, 2011, 6, 1215-1230.	3.3	67
38	Overcoming multidrug resistance using silica nanoparticles PEG-b-PLA polymeric micelles loaded with doxorubicin. Nanomedicine, 2011, 6, 1492-3.	3.3	0
39	Reversal of multidrug resistance by PEG-b-PLA polymeric micelles loaded with paclitaxel. Nanomedicine, 2011, 6, 1493-4.	3.3	0
40	Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. Journal of Controlled Release, 2010, 143, 290-301.	9.9	142
41	Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease. Nanomedicine, 2010, 5, 379-396.	3.3	154
42	Nanoformulated superoxide dismutase 1 (SOD1): Implications for angiotensin II (AngII) and brainâ€related cardiovascular diseases. FASEB Journal, 2010, 24, 402.2.	0.5	0
43	Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Journal of Controlled Release, 2008, 130, 98-106.	9.9	1,091
44	A Macrophageâ^'Nanozyme Delivery System for Parkinson's Disease. Bioconjugate Chemistry, 2007, 18, 1498-1506.	3.6	177
45	Alteration of Genomic Responses to Doxorubicin and Prevention of MDR in Breast Cancer Cells by a Polymer Excipient:  Pluronic P85. Molecular Pharmaceutics, 2006, 3, 113-123.	4.6	68
46	Polymer Micelles as Drug Carriers. , 2006, , 57-93.		49
47	Polypeptide Point Modifications with Fatty Acid and Amphiphilic Block Copolymers for Enhanced Brain Delivery. Bioconjugate Chemistry, 2005, 16, 793-802.	3.6	76
48	Distribution kinetics of a micelle-forming block copolymer Pluronic P85. Journal of Controlled Release, 2004, 100, 389-397.	9.9	113
49	Effects of Pluronic P85 on GLUT1 and MCT1 Transporters in the Blood-Brain Barrier. Pharmaceutical Research, 2004, 21, 1993-2000.	3.5	36
50	Effect of Pluronic P85 on ATPase Activity of Drug Efflux Transporters. Pharmaceutical Research, 2004, 21, 2226-2233.	3.5	155
51	Pluronic Block Copolymers as Novel Therapeutics in Drug Delivery. ACS Symposium Series, 2004, , 130-153.	0.5	4
52	Sensitization of cells overexpressing multidrug-resistant proteins by pluronic P85. Pharmaceutical Research, 2003, 20, 1581-1590.	3.5	115
53	Optimal Structure Requirements for Pluronic Block Copolymers in Modifying P-glycoprotein Drug Efflux Transporter Activity in Bovine Brain Microvessel Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 845-854.	2.5	240
54	Selective energy depletion and sensitization of multiple drug-resistant cancer cells by pluronic block copolymer. Macromolecular Symposia, 2001, 172, 103-112.	0.7	6

#	Article	IF	CITATIONS
55	Inhibition of multidrug resistance-associated protein (MRP) functional activity with pluronic block copolymers. Pharmaceutical Research, 1999, 16, 396-401.	3.5	116
56	Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharmaceutical Research, 1999, 16, 1373-1379.	3.5	266
57	Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharmaceutical Research, 1999, 16, 1366-1372.	3.5	192
58	Polyion Complex Micelles with Protein-Modified Corona for Receptor-Mediated Delivery of Oligonucleotides into Cells. Bioconjugate Chemistry, 1999, 10, 851-860.	3.6	136
59	Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharmaceutical Research, 1998, 15, 1525-1532.	3.5	130
60	Effects of pluronic block copolymers on drug absorption in Caco-2 cell monolayers. Pharmaceutical Research, 1998, 15, 850-855.	3.5	150
61	Interactions of Pluronic Block Copolymers with Brain Microvessel Endothelial Cells:Â Evidence of Two Potential Pathways for Drug Absorption. Bioconiugate Chemistry, 1997, 8, 649-657.	3.6	154