Andrew L Kau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6886647/publications.pdf Version: 2024-02-01

ANDREW KALL

#	Article	IF	CITATIONS
1	Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science, 2013, 341, 1241214.	12.6	3,006
2	Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474, 327-336.	27.8	2,175
3	Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 2012, 482, 179-185.	27.8	2,026
4	NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis. Cell, 2011, 145, 745-757.	28.9	1,716
5	Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor. Science, 2013, 339, 548-554.	12.6	1,012
6	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 2011, 29, 415-420.	17.5	608
7	Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Science Translational Medicine, 2015, 7, 276ra24.	12.4	280
8	Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature, 2016, 534, 263-266.	27.8	266
9	Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature, 2017, 546, 528-532.	27.8	231
10	Distinct Contributions of Aire and Antigen-Presenting-Cell Subsets to the Generation of Self-Tolerance in the Thymus. Immunity, 2014, 41, 414-426.	14.3	218
11	Contribution of Autolysin and Sortase A during <i>Enterococcus faecalis</i> DNA-Dependent Biofilm Development. Infection and Immunity, 2009, 77, 3626-3638.	2.2	147
12	Enterococcus faecalis Tropism for the Kidneys in the Urinary Tract of C57BL/6J Mice. Infection and Immunity, 2005, 73, 2461-2468.	2.2	127
13	<i>Helicobacter</i> species are potent drivers of colonic T cell responses in homeostasis and inflammation. Science Immunology, 2017, 2, .	11.9	100
14	The Human Microbiota and Asthma. Clinical Reviews in Allergy and Immunology, 2019, 57, 350-363.	6.5	92
15	Mechanism for Sortase Localization and the Role of Sortase Localization in Efficient Pilus Assembly in <i>Enterococcus faecalis</i> . Journal of Bacteriology, 2009, 191, 3237-3247.	2.2	89
16	Interaction of uropathogenic Escherichia coli with host uroepithelium. Current Opinion in Microbiology, 2005, 8, 54-59.	5.1	67
17	Pilin and Sortase Residues Critical for Endocarditis- and Biofilm-Associated Pilus Biogenesis in Enterococcus faecalis. Journal of Bacteriology, 2013, 195, 4484-4495.	2.2	64
18	Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nature Microbiology, 2022, 7, 630-639.	13.3	54

Andrew L Kau

#	Article	IF	CITATIONS
19	Anti-interleukin 4 and 13 for asthma treatment in the era of endotypes. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 570-575.	2.3	43
20	Immune dysregulation underlies a subset of patients with chronic idiopathic pruritus. Journal of the American Academy of Dermatology, 2016, 74, 1017-1020.	1.2	37
21	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. PLoS Biology, 2020, 18, e3000788.	5.6	30
22	A Potential Role for Stress-Induced Microbial Alterations in IgA-Associated Irritable Bowel Syndrome with Diarrhea. Cell Reports Medicine, 2020, 1, 100124.	6.5	24
23	Impaired Chylomicron Assembly Modifies Hepatic Metabolism Through Bile Acid–Dependent and Transmissible Microbial Adaptations. Hepatology, 2019, 70, 1168-1184.	7.3	12
24	Airway Microbiota-Host Interactions Regulate Secretory Leukocyte Protease Inhibitor Levels and Influence Allergic Airway Inflammation. Cell Reports, 2020, 33, 108331.	6.4	11
25	The ABCs of wheeze: Asthma and bacterial communities. PLoS Pathogens, 2019, 15, e1007645.	4.7	9
26	Age-Dependent Reduction in Asthmatic Pathology through Reprogramming of Postviral Inflammatory Responses. Journal of Immunology, 2022, 208, 1467-1482.	0.8	6
27	Generalized pruritus relieved by NSAIDs in the setting of mast cell activation syndrome. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 2130-2131.	3.8	5
28	Altered IgA Response to Gut Bacteria Is Associated with Childhood Asthma in Peru. Journal of Immunology, 2021, 207, 398-407.	0.8	5
29	Using only a subset of pneumococcal serotypes is reliable for the diagnosis of specific antibody deficiency in children: A proofâ€ofâ€concept study. Pediatric Allergy and Immunology, 2019, 30, 392-395.	2.6	2
30	Allergen Sensitivity Patterns Among Atopic Individuals At A Tertiary Allergy Center. Journal of Allergy and Clinical Immunology, 2014, 133, AB216.	2.9	0
31	Breathe Soft, What Bugs through Early Windows Break?. Cell Host and Microbe, 2018, 24, 337-339.	11.0	0
32	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.		0
33	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.		0
34	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.		0
35	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.		0
36	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.		0

#	Article	IF	CITATIONS
37	Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. , 2020, 18, e3000788.		0