List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6885901/publications.pdf Version: 2024-02-01

		18482	25787
130	12,374	62	108
papers	citations	h-index	g-index
132	132	132	5955
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis, structures and properties of hydrophobic Alkyltrimethoxysilane-Polyvinyltrimethoxysilane hybrid aerogels with different alkyl chain lengths. Journal of Colloid and Interface Science, 2022, 608, 720-734.	9.4	11
2	A comprehensive review of cell structure variation and general rules for polymer microcellular foams. Chemical Engineering Journal, 2022, 430, 132662.	12.7	60
3	Fluorescence assisted visualization and destruction of particles embedded thin cell walls in polymeric foams via supercritical foaming. Journal of Supercritical Fluids, 2022, 181, 105511.	3.2	15
4	Recent Advances in Graphene-Based Polymer Nanocomposites and Foams for Electromagnetic Interference Shielding Applications. Industrial & Engineering Chemistry Research, 2022, 61, 1545-1568.	3.7	25
5	Molecular engineering of the surface of boron nitride nanotubes for manufacture of thermally conductive dielectric polymer composites. Applied Surface Science, 2022, 587, 152779.	6.1	11
6	Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection. Nano-Micro Letters, 2022, 14, 19.	27.0	76
7	Using a Supercritical Fluid-Assisted Thin Cell Wall Stretching–Defoaming Method to Enhance the Nanofiller Dispersion, EMI Shielding, and Thermal Conduction Property of CNF/PVDF Nanocomposites. Industrial & Engineering Chemistry Research, 2022, 61, 3647-3659.	3.7	18
8	Cost-effective and reproducible technologies for fabrication of tissue engineered scaffolds: The state-of-the-art and future perspectives. Polymer, 2022, 244, 124681.	3.8	10
9	Microcellular foamed polyamide 6/carbon nanotube composites with superior electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 117, 215-224.	10.7	28
10	Flexible Poly(ether-block-amide)/Carbon Nanotube Composites for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 7598-7608.	5.0	9
11	Microcellular foams simultaneous reinforcing and toughening strategy of combining nano-fibrillation network and supercritical solid-state foaming. Polymer, 2022, 252, 124928.	3.8	13
12	Structure-gradient thermoplastic polyurethane foams with enhanced resilience derived by microcellular foaming. Journal of Supercritical Fluids, 2022, 188, 105667.	3.2	15
13	Polylactic acid/UV-crosslinked in-situ ethylene-propylene-diene terpolymer nanofibril composites with outstanding mechanical and foaming performance. Chemical Engineering Journal, 2022, 447, 137509.	12.7	18
14	Nanocellular poly(ether- <i>block</i> -amide)/MWCNT nanocomposite films fabricated by stretching-assisted microcellular foaming for high-performance EMI shielding applications. Journal of Materials Chemistry C, 2021, 9, 1245-1258.	5.5	53
15	CVD carbon-coated carbonized loofah sponge loaded with a directionally arrayed MXene aerogel for electromagnetic interference shielding. Journal of Materials Chemistry A, 2021, 9, 358-370.	10.3	48
16	Nanofibrillated polymer systems: Design, application, and current state of the art. Progress in Polymer Science, 2021, 113, 101346.	24.7	47
17	Strong, highly hydrophobic, transparent, and super-insulative polyorganosiloxane-based aerogel. Chemical Engineering Journal, 2021, 413, 127488.	12.7	28
18	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry	10.3	184

#	Article	IF	CITATIONS
19	An off-lattice model of the Sanchez-Lacombe Eq. of state for polymers with finite flexibility. Polymer, 2021, 215, 123334.	3.8	2
20	Nanofiber fluorescence coating for evaluation of complex solid-/gas-multi-phase and nano-/micro- multi-scale nanocomposite foam structure. Progress in Organic Coatings, 2021, 154, 106183.	3.9	15
21	Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks. Chemical Engineering Journal, 2021, 411, 128382.	12.7	59
22	Rheological and foaming behaviors of long-chain branched polyamide 6 with controlled branch length. Polymer, 2021, 224, 123730.	3.8	29
23	Research on cellular morphology and mechanical properties of microcellular injection–molded BCPP and its blends. International Journal of Advanced Manufacturing Technology, 2021, 116, 2223-2241.	3.0	4
24	Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon, 2021, 179, 408-416.	10.3	66
25	LDPE/MWCNT and LDPE/MWCNT/UHMWPE self-reinforced fiber-composite foams prepared via supercritical CO2: A microstructure-engineering property perspective. Journal of Supercritical Fluids, 2021, 174, 105248.	3.2	17
26	Role of interfacial adhesion and fiber length on the mechanical performance fiber reinforced thermoplastic elastomers. Composites Science and Technology, 2021, 213, 108928.	7.8	7
27	Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors. Energy, 2021, 233, 121140.	8.8	26
28	The critical requirement for high-pressure foam injection molding with supercritical fluid. Polymer, 2021, 238, 124388.	3.8	8
29	Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon, 2020, 156, 58-66.	10.3	138
30	Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Advances in Colloid and Interface Science, 2020, 276, 102101.	14.7	99
31	Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. Journal of Materials Chemistry C, 2020, 8, 58-70.	5.5	120
32	Insights into in-situ sol-gel conversion in graphene modified polymer-based silica gels for multifunctional aerogels. Chemical Engineering Journal, 2020, 392, 123813.	12.7	27
33	Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. Journal of Colloid and Interface Science, 2020, 561, 890-901.	9.4	37
34	Mechanically robust and thermally insulating polyarylene ether nitrile with a bone-like structure. Materials and Design, 2020, 196, 109099.	7.0	9
35	An Effective Design Strategy for the Sandwich Structure of PVDF/GNP-Ni-CNT Composites with Remarkable Electromagnetic Interference Shielding Effectiveness. ACS Applied Materials & Interfaces, 2020, 12, 36568-36577.	8.0	112
36	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. ACS Applied Materials & Interfaces, 2020, 12, 50793-50802.	8.0	47

#	Article	IF	CITATIONS
37	Facilitating supercritical CO2 assisted exfoliation of graphene nanoplatelets with the polymer matrix. Chemical Engineering Journal, 2020, 394, 124930.	12.7	24
38	Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams. Nanoscale, 2020, 12, 13064-13085.	5.6	32
39	Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications. RSC Advances, 2020, 10, 22909-22920.	3.6	28
40	Theoretical modeling and experimental verification of percolation threshold with MWCNTs' rotation and translation around a growing bubble in conductive polymer composite foams. Composites Science and Technology, 2020, 199, 108345.	7.8	38
41	Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding. Chemical Engineering Journal, 2020, 390, 124520.	12.7	103
42	Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams. Composites Science and Technology, 2020, 191, 108084.	7.8	97
43	In Situ Interface Design in Graphene-Embedded Polymeric Silica Aerogel with Organic/Inorganic Hybridization. ACS Applied Materials & Interfaces, 2020, 12, 26635-26648.	8.0	31
44	Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. Journal of Materials Chemistry C, 2020, 8, 7401-7410.	5.5	70
45	A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. Journal of Materials Chemistry A, 2019, 7, 133-140.	10.3	111
46	Accurate theoretical modeling of cell growth by comparing with visualized data in high-pressure foam injection molding. European Polymer Journal, 2019, 119, 189-199.	5.4	18
47	Multi-dimensional analysis of micro-/nano-polymeric foams by confocal laser scanning microscopy and foam simulations. Chemical Engineering Science, 2019, 207, 892-902.	3.8	24
48	Effects of polymer-filler interactions on controlling the conductive network formation in polyamide 6/multi-Walled carbon nanotube composites. Polymer, 2019, 178, 121684.	3.8	40
49	rGO/Fe ₃ O ₄ hybrid induced ultra-efficient EMI shielding performance of phenolic-based carbon foam. RSC Advances, 2019, 9, 20643-20651.	3.6	41
50	Insight into the Directional Thermal Transport of Hexagonal Boron Nitride Composites. ACS Applied Materials & Interfaces, 2019, 11, 41726-41735.	8.0	33
51	Thermally conductive polymer-graphene nanoplatelet composite foams. AIP Conference Proceedings, 2019, , .	0.4	1
52	Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure. Journal of Colloid and Interface Science, 2019, 548, 206-216.	9.4	25
53	The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel. RSC Advances, 2019, 9, 11503-11520.	3.6	39
54	Structure-tunable thermoplastic polyurethane foams fabricated by supercritical carbon dioxide foaming and their compressive mechanical properties. Journal of Supercritical Fluids, 2019, 149, 127-137.	3.2	73

#	Article	IF	CITATIONS
55	Bio-inspired polyethylene-based composite reinforced by thermoplastic polyurethane (TPU) fiber for aerogel production. AIP Conference Proceedings, 2019, , .	0.4	4
56	Poly(vinylidene fluoride) foams: a promising low- <i>k</i> dielectric and heat-insulating material. Journal of Materials Chemistry C, 2018, 6, 3065-3073.	5.5	110
57	Lightweight, super-elastic, and thermal-sound insulation bio-based PEBA foams fabricated by high-pressure foam injection molding with mold-opening. European Polymer Journal, 2018, 103, 68-79.	5.4	120
58	Non-crosslinked thermoplastic reticulated polymer foams from crystallization-induced structural heterogeneities. Polymer, 2018, 135, 185-192.	3.8	46
59	Reinforced resorcinol formaldehyde aerogel with Co-assembled polyacrylonitrile nanofibers and graphene oxide nanosheets. Materials and Design, 2018, 151, 154-163.	7.0	24
60	Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance. Journal of Materials Chemistry C, 2018, 6, 350-359.	5.5	48
61	Ultralow-Threshold and Lightweight Biodegradable Porous PLA/MWCNT with Segregated Conductive Networks for High-Performance Thermal Insulation and Electromagnetic Interference Shielding Applications. ACS Applied Materials & Interfaces, 2018, 10, 1195-1203.	8.0	241
62	Enhanced Thermal Conductivity of Graphene Nanoplatelet–Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation. ACS Applied Materials & Interfaces, 2018, 10, 1225-1236.	8.0	114
63	Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. European Polymer Journal, 2018, 98, 1-10.	5.4	117
64	Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon, 2018, 127, 469-478.	10.3	169
65	Lightweight, thermally insulating, and low dielectric microcellular high-impact polystyrene (HIPS) foams fabricated by high-pressure foam injection molding with mold opening. Journal of Materials Chemistry C, 2018, 6, 12294-12305.	5.5	55
66	Lightweight and strong microcellular injection molded PP/talc nanocomposite. Composites Science and Technology, 2018, 168, 38-46.	7.8	89
67	Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. Journal of Materials Chemistry C, 2018, 6, 10292-10300.	5.5	165
68	Lightweight and tough nanocellular PP/PTFE nanocomposite foams with defect-free surfaces obtained using in situ nanofibrillation and nanocellular injection molding. Chemical Engineering Journal, 2018, 350, 1-11.	12.7	154
69	Nanostructure to thermal property relationship of resorcinol formaldehyde aerogels using the fractal technique. Nanoscale, 2018, 10, 10564-10575.	5.6	34
70	Application of a constant hole volume Sanchez–Lacombe equation of state to mixtures relevant to polymeric foaming. Soft Matter, 2018, 14, 4603-4614.	2.7	16
71	Modelling of Rod-Like Fillers' Rotation and Translation near Two Growing Cells in Conductive Polymer Composite Foam Processing. Polymers, 2018, 10, 261.	4.5	26
72	Ultralight Microcellular Polymer–Graphene Nanoplatelet Foams with Enhanced Dielectric Performance. ACS Applied Materials & Interfaces, 2018, 10, 19987-19998.	8.0	79

#	Article	IF	CITATIONS
73	Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer–Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming. ACS Applied Materials & Interfaces, 2018, 10, 30752-30761.	8.0	156
74	Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. Journal of Materials Chemistry C, 2018, 6, 6847-6859.	5.5	136
75	Evaluating Characteristic Parameters for Carbon Dioxide in the Sanchez–Lacombe Equation of State. Journal of Chemical & Engineering Data, 2017, 62, 585-595.	1.9	9
76	Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms. Polymer, 2017, 119, 28-39.	3.8	91
77	Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation. Carbon, 2017, 120, 1-10.	10.3	124
78	Study of the foaming mechanisms associated with gas counter pressure and mold opening using the pressure profiles. Chemical Engineering Science, 2017, 167, 105-119.	3.8	26
79	Ultra-tough and super thermal-insulation nanocellular PMMA/TPU. Chemical Engineering Journal, 2017, 325, 632-646.	12.7	165
80	High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Materials and Design, 2017, 131, 1-11.	7.0	161
81	Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene) Tj ETQq1 1 0.784	1314 _r gBT 8.0	/Oyerlock 10
82	Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material. Nanoscale, 2017, 9, 5996-6009.	5.6	124
83	Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties. European Polymer Journal, 2017, 95, 382-393.	5.4	136
84	Steam-chest molding of expanded thermoplastic polyurethane bead foams and their mechanical properties. Chemical Engineering Science, 2017, 174, 337-346.	3.8	61
85	Polymeric Foaming Predictions from the Sanchez-Lacombe Equation of State: Application to Polypropylene-Carbon Dioxide Mixtures. Physical Review Applied, 2017, 8, .	3.8	11
86	Acid–Base Polymeric Foams for the Adsorption of Micro-oil Droplets from Industrial Effluents. Environmental Science & Technology, 2017, 51, 8552-8560.	10.0	57
87	Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging. Chemical Engineering Journal, 2017, 327, 1151-1162.	12.7	112
88	Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. Journal of Materials Chemistry C, 2017, 5, 6954-6961.	5.5	139
89	Development of high-porosity resorcinol formaldehyde aerogels with enhanced mechanical properties through improved particle necking under CO 2 supercritical conditions. Journal of Colloid and Interface Science, 2017, 485, 65-74.	9.4	49
90	Effect of the melt compressibility and the pressure drop rate on the cell-nucleation behavior in foam injection molding with mold opening. European Polymer Journal, 2017, 92, 314-325.	5.4	45

#	Article	IF	CITATIONS
91	Experimental observation and modeling of fiber rotation and translation during foam injection molding of polymer composites. Composites Part A: Applied Science and Manufacturing, 2016, 88, 67-74.	7.6	51
92	From micro/nano structured isotactic polypropylene to a multifunctional low-density nanoporous medium. RSC Advances, 2016, 6, 108056-108066.	3.6	12
93	Study of the bubble nucleation and growth mechanisms in high-pressure foam injection molding through in-situ visualization. European Polymer Journal, 2016, 76, 2-13.	5.4	65
94	Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 2016, 83, 130-139.	7.6	129
95	A semi-empirical model relating micro structure to acoustic properties of bimodal porous material. Journal of Applied Physics, 2015, 117, .	2.5	11
96	Characterization of the Structure, Acoustic Property, Thermal Conductivity, and Mechanical Property of Highly Expanded Open ell Polycarbonate Foams. Macromolecular Materials and Engineering, 2015, 300, 48-56.	3.6	63
97	Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams. Carbon, 2015, 93, 819-829.	10.3	158
98	A novel technology to manufacture biodegradable polylactide bead foam products. Materials and Design, 2015, 83, 413-421.	7.0	101
99	Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils. Polymer, 2015, 68, 83-91.	3.8	80
100	Development of polylactide bead foams with double crystal melting peaks. Polymer, 2015, 69, 83-94.	3.8	142
101	A facile method to increase the charge storage capability of polymer nanocomposites. Nano Energy, 2015, 15, 54-65.	16.0	108
102	Poly(lactic acid)-Based in Situ Microfibrillar Composites with Enhanced Crystallization Kinetics, Mechanical Properties, Rheological Behavior, and Foaming Ability. Biomacromolecules, 2015, 16, 3925-3935.	5.4	157
103	Superhydrophobic and Oleophilic Open-Cell Foams from Fibrillar Blends of Polypropylene and Polytetrafluoroethylene. ACS Applied Materials & amp; Interfaces, 2014, 6, 21131-21140.	8.0	145
104	Poly (lactic acid) foaming. Progress in Polymer Science, 2014, 39, 1721-1741.	24.7	401
105	Foaming Poly(vinyl alcohol)/Microfibrillated Cellulose Composites with CO ₂ and Water as Co-blowing Agents. Industrial & Engineering Chemistry Research, 2014, 53, 11962-11972.	3.7	59
106	Lightweight Polypropylene/Stainless-Steel Fiber Composite Foams with Low Percolation for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2014, 6, 11091-11100.	8.0	295
107	Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	77
108	Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxide—Effects of extensional stresses and crystals. Journal of Supercritical Fluids, 2013, 79, 142-151.	3.2	174

#	Article	IF	CITATIONS
109	Maximal cell density predictions for compressible polymer foams. Polymer, 2013, 54, 841-845.	3.8	26
110	Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system. Chemical Engineering Journal, 2013, 214, 180-188.	12.7	82
111	Effects of nano-/micro-sized additives on the crystallization behaviors of PLA andÂPLA/CO2 mixtures. Polymer, 2013, 54, 2382-2391.	3.8	150
112	Double Crystal Melting Peak Generation for Expanded Polypropylene Bead Foam Manufacturing. Industrial & Engineering Chemistry Research, 2013, 52, 2297-2303.	3.7	113
113	Poly(lactic acid) crystallization. Progress in Polymer Science, 2012, 37, 1657-1677.	24.7	1,190
114	The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide. Chemical Engineering Science, 2012, 75, 49-62.	3.8	109
115	Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 2012, 63, 187-198.	3.2	174
116	Origins of the failure of classical nucleation theory for nanocellular polymer foams. Soft Matter, 2011, 7, 7351.	2.7	46
117	Towards maximal cell density predictions for polymeric foams. Polymer, 2011, 52, 5622-5629.	3.8	26
118	Determination of Solubilities of CO ₂ in Linear and Branched Polypropylene Using a Magnetic Suspension Balance and a <i>PVT</i> Apparatus. Journal of Chemical & Engineering Data, 2010, 55, 4885-4895.	1.9	50
119	Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes. Chemical Engineering Science, 2009, 64, 4899-4907.	3.8	109
120	A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2. International Journal of Molecular Sciences, 2009, 10, 5381-5397.	4.1	182
121	The Effects of Exfoliated Nano-clay on the Extrusion Microcellular Foaming of Amorphous and Crystalline Nylon. Journal of Cellular Plastics, 2006, 42, 271-288.	2.4	42
122	Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004, 91, 2661-2668.	2.6	236
123	Rotational foam molding of polypropylene with control of melt strength. Advances in Polymer Technology, 2003, 22, 280-296.	1.7	44
124	Effects of die geometry on cell nucleation of PS foams blown with CO2. Polymer Engineering and Science, 2003, 43, 1378-1390.	3.1	176
125	Strategies for achieving ultra low-density polypropylene foams. Polymer Engineering and Science, 2002, 42, 1481-1492.	3.1	243
126	Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends. Polymer Engineering and Science, 1998, 38, 1205-1215.	3.1	237

#	ARTICLE	IF	CITATIONS
127	Low density microcellular foam processing in extrusion using CO2. Polymer Engineering and Science, 1998, 38, 1812-1823.	3.1	248
128	Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites. Polymer Engineering and Science, 1998, 38, 1862-1872.	3.1	223
129	A study of cell nucleation in the extrusion of polypropylene foams. Polymer Engineering and Science, 1997, 37, 1-10.	3.1	285
130	Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polymer Engineering and Science, 1996, 36, 2645-2662.	3.1	263