
Lorraine V Kalia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6885550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Chapter for the Journal of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 1365-1367.	2.8	0
2	Using artificial intelligence to identify antiâ€hypertensives as possible disease modifying agents in Parkinson's disease. Pharmacoepidemiology and Drug Safety, 2021, 30, 201-209.	1.9	11
3	Regulation of Parkin-dependent mitophagy by Bcl-2-associated athanogene (BAG) family members. Neural Regeneration Research, 2021, 16, 684.	3.0	6
4	Botulinum Toxin-Associated Prolonged Remission of Idiopathic Cervical Dystonia. Canadian Journal of Neurological Sciences, 2021, , 1-5.	0.5	1
5	COVID-19 Vaccination for Persons with Parkinson's Disease: Light at the End of the Tunnel?. Journal of Parkinson's Disease, 2021, 11, 3-8.	2.8	21
6	Semi-Quantitative Determination of Dopaminergic Neuron Density in the Substantia Nigra of Rodent Models using Automated Image Analysis. Journal of Visualized Experiments, 2021, , .	0.3	3
7	Occurrence of Amyotrophic Lateral Sclerosis in Type 1 Gaucher Disease. Neurology: Genetics, 2021, 7, e600.	1.9	3
8	Recent Advances in the Development of Stem ellâ€Derived Dopaminergic Neuronal Transplant Therapies for Parkinson's Disease. Movement Disorders, 2021, 36, 1772-1780.	3.9	31
9	C-terminus of Hsp70 Interacting Protein (CHIP) and Neurodegeneration: Lessons from the Bench and Bedside. Current Neuropharmacology, 2021, 19, 1038-1068.	2.9	9
10	An Intelligent Diagnosis: SMART Syndrome. American Journal of Medicine, 2021, 134, 863-865.	1.5	0
11	The eIF2α kinase HRI triggers the autophagic clearance of cytosolic protein aggregates. Journal of Biological Chemistry, 2021, 296, 100050.	3.4	21
12	Small molecule inhibitors of $\hat{l}\pm$ -synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans. Molecular Neurodegeneration, 2021, 16, 77.	10.8	13
13	Expert comment: "A case of missing pathology in a patient with LRRK2 Parkinson's disease― Parkinsonism and Related Disorders, 2020, 74, 78-79.	2.2	3
14	BAG5 Promotes Alpha-Synuclein Oligomer Formation and Functionally Interacts With the Autophagy Adaptor Protein p62. Frontiers in Cell and Developmental Biology, 2020, 8, 716.	3.7	6
15	Identifying drugs with diseaseâ€modifying potential in Parkinson's disease using artificial intelligence and pharmacoepidemiology. Pharmacoepidemiology and Drug Safety, 2020, 29, 864-872.	1.9	22
16	LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson's Disease?. Frontiers in Neuroscience, 2020, 14, 577.	2.8	49
17	Deep Brain Stimulation of the Medial Septal Nucleus Induces Expression of a Virally Delivered Reporter Gene in Dentate Gyrus. Frontiers in Neuroscience, 2020, 14, 463.	2.8	4
18	Methods for detecting toxic α-synuclein species as a biomarker for Parkinson's disease. Critical Reviews in Clinical Laboratory Sciences, 2020, 57, 291-307.	6.1	13

LORRAINE V KALIA

#	Article	IF	CITATIONS
19	Early-onset impairment of the ubiquitin-proteasome system in dopaminergic neurons caused by α-synuclein. Acta Neuropathologica Communications, 2020, 8, 17.	5.2	65
20	Disease modification and biomarker development in Parkinson disease. Neurology, 2020, 94, 481-494.	1.1	103
21	Cost-effectiveness analysis of MR-guided focused ultrasound thalamotomy for tremor-dominant Parkinson's disease. Journal of Neurosurgery, 2020, 135, 273-278.	1.6	10
22	The clinical significance of lower limb tremors. Parkinsonism and Related Disorders, 2019, 65, 165-171.	2.2	7
23	Multiple system atrophy and myoclonus. Neurology, 2019, 93, 287-288.	1.1	0
24	Bcl-2-associated athanogene 5 (BAG5) regulates Parkin-dependent mitophagy and cell death. Cell Death and Disease, 2019, 10, 907.	6.3	32
25	Diagnostic biomarkers for Parkinson's disease: focus on α-synuclein in cerebrospinal fluid. Parkinsonism and Related Disorders, 2019, 59, 21-25.	2.2	16
26	Deep brain stimulation: potential for neuroprotection. Annals of Clinical and Translational Neurology, 2019, 6, 174-185.	3.7	50
27	ls there a role for MRâ€guided focused ultrasound in Parkinson's disease?. Movement Disorders, 2018, 33, 575-579.	3.9	6
28	Emerging diseaseâ€modifying strategies targeting αâ€synuclein for the treatment of Parkinson's disease. British Journal of Pharmacology, 2018, 175, 3080-3089.	5.4	13
29	Biomarkers for cognitive dysfunction in Parkinson's disease. Parkinsonism and Related Disorders, 2018, 46, S19-S23.	2.2	37
30	Parkinsonism due to A53E αâ€synuclein gene mutation: Clinical, genetic, epigenetic, and biochemical features. Movement Disorders, 2018, 33, 1950-1955.	3.9	25
31	[¹⁸ F]AVâ€1451 binding and postmortem pathology of CBD. Movement Disorders, 2018, 33, 1360-1361.	3.9	5
32	Exploiting the aggregation properties of alphaâ€synuclein for diagnostic purposes. Movement Disorders, 2017, 32, 106-106.	3.9	0
33	α-Synuclein and Parkinsonism: Updates and Future Perspectives. Current Neurology and Neuroscience Reports, 2017, 17, 31.	4.2	69
34	Complex genomic rearrangement in <i>SPG11</i> due to a DNA replicationâ€based mechanism. Movement Disorders, 2017, 32, 1792-1794.	3.9	1
35	Animal models of α-synucleinopathy for Parkinson disease drug development. Nature Reviews Neuroscience, 2017, 18, 515-529.	10.2	166
36	Chaperone-Based Therapies for Disease Modification in Parkinson's Disease. Parkinson's Disease, 2017, 2017. 1-11.	1.1	32

LORRAINE V KALIA

#	Article	IF	CITATIONS
37	Merging DBS with viral vector or stem cell implantation: "hybrid―stereotactic surgery as an evolution in the surgical treatment of Parkinson's disease. Molecular Therapy - Methods and Clinical Development, 2016, 3, 15051.	4.1	14
38	α-Synuclein-Based Animal Models of Parkinson's Disease: Challenges and Opportunities in a New Era. Trends in Neurosciences, 2016, 39, 750-762.	8.6	120
39	Evolving basic, pathological and clinical concepts in PD. Nature Reviews Neurology, 2016, 12, 65-66.	10.1	279
40	Diseaseâ€modifying strategies for Parkinson's disease. Movement Disorders, 2015, 30, 1442-1450.	3.9	188
41	α-Synuclein and Lewy pathology in Parkinson's disease. Current Opinion in Neurology, 2015, 28, 375-381.	3.6	79
42	Clinical Correlations With Lewy Body Pathology in <i>LRRK2</i> -Related Parkinson Disease. JAMA Neurology, 2015, 72, 100.	9.0	272
43	Repetitive transcranial magnetic stimulation plus standardized suggestion of benefit for functional movement disorders: An open label case series. Parkinsonism and Related Disorders, 2015, 21, 407-412.	2.2	22
44	Parkinson's disease. Lancet, The, 2015, 386, 896-912.	13.7	4,079
45	Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2626-2631.	7.1	342
46	Tremor in Spinocerebellar Ataxia Type 12. Movement Disorders Clinical Practice, 2014, 1, 76-78.	1.5	6
47	Pathogenesis-Targeted, Disease-Modifying Therapies in Parkinson Disease. Neurotherapeutics, 2014, 11, 6-23.	4.4	119
48	Direct detection of alpha synuclein oligomers in vivo. Acta Neuropathologica Communications, 2013, 1, 6.	5.2	49
49	αâ€Synuclein oligomers and clinical implications for Parkinson disease. Annals of Neurology, 2013, 73, 155-169.	5.3	255
50	Novel nondopaminergic targets for motor features of Parkinson's disease: Review of recent trials. Movement Disorders, 2013, 28, 131-144.	3.9	99
51	Hemichorea-hemiballism associated with hyperglycemia and a developmental venous anomaly. Neurology, 2012, 78, 838-838.	1.1	9
52	Ubiquitinylation of α-Synuclein by Carboxyl Terminus Hsp70-Interacting Protein (CHIP) Is Regulated by Bcl-2-Associated Athanogene 5 (BAG5). PLoS ONE, 2011, 6, e14695.	2.5	119
53	Schizophrenia susceptibility pathway neuregulin 1–ErbB4 suppresses Src upregulation of NMDA receptors. Nature Medicine, 2011, 17, 470-478.	30.7	157
54	Thoracic Myelopathy from Coincident Fluorosis and Epidural Lipomatosis. Canadian Journal of Neurological Sciences, 2010, 37, 276-278.	0.5	5

LORRAINE V KALIA

#	Article	IF	CITATIONS
55	Neto1 Is a Novel CUB-Domain NMDA Receptor–Interacting Protein Required for Synaptic Plasticity and Learning. PLoS Biology, 2009, 7, e1000041.	5.6	150
56	NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurology, The, 2008, 7, 742-755.	10.2	363
57	PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. EMBO Journal, 2006, 25, 4971-4982.	7.8	56
58	Severity of chronic pain and its relationship to quality of life in multiple sclerosis. Multiple Sclerosis Journal, 2005, 11, 322-327.	3.0	176
59	Src in synaptic transmission and plasticity. Oncogene, 2004, 23, 8007-8016.	5.9	146
60	Src kinases: a hub for NMDA receptor regulation. Nature Reviews Neuroscience, 2004, 5, 317-328.	10.2	692
61	Glycine binding primes NMDA receptor internalization. Nature, 2003, 422, 302-307.	27.8	382
62	Interactions between Src family protein tyrosine kinases and PSD-95. Neuropharmacology, 2003, 45, 720-728.	4.1	92
63	Differential Frequency Dependence of P2Y1- and P2Y2- Mediated Ca2+Signaling in Astrocytes. Journal of Neuroscience, 2003, 23, 4437-4444.	3.6	81
64	Tyrosine Phosphatase STEP Is a Tonic Brake on Induction of Long-Term Potentiation. Neuron, 2002, 34, 127-138.	8.1	196