Gordana Vunjak-Novakovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6884575/publications.pdf Version: 2024-02-01

	813	2629
42,945	118	194
citations	h-index	g-index
435	435	31026
docs citations	times ranked	citing authors
	42,945 citations 435 docs citations	42,945 citations h-index 435 docs citations 435 times ranked

CORDANA VUNIAR-NOVAROVIC

#	Article	IF	CITATIONS
1	Cross-Circulation for Extracorporeal Liver Support in a Swine Model. ASAIO Journal, 2022, 68, 561-570.	1.6	3
2	A framework for developing sex-specific engineered heart models. Nature Reviews Materials, 2022, 7, 295-313.	48.7	22
3	RNA and Protein Delivery by Cell ecreted and Bioengineered Extracellular Vesicles. Advanced Healthcare Materials, 2022, 11, e2101557.	7.6	5
4	Bioengineering Human Cartilage–Bone Tissues for Modeling of Osteoarthritis. Stem Cells and Development, 2022, 31, 399-405.	2.1	3
5	Imaging-guided bioreactor for de-epithelialization and long-term cultivation of <i>ex vivo</i> rat trachea. Lab on A Chip, 2022, 22, 1018-1031.	6.0	6
6	Emerging Trajectories for Next Generation Tissue Engineers. ACS Biomaterials Science and Engineering, 2022, 8, 4598-4604.	5.2	5
7	A Micropatterning Assay for Measuring Cell Chirality. Journal of Visualized Experiments, 2022, , .	0.3	0
8	Progress in multicellular human cardiac organoids for clinical applications. Cell Stem Cell, 2022, 29, 503-514.	11.1	39
9	Imaging-Guided Bioreactor for Generating Bioengineered Airway Tissue. Journal of Visualized Experiments, 2022, , .	0.3	0
10	Changes in extracellular matrix in failing human non-ischemic and ischemic hearts with mechanical unloading. Journal of Molecular and Cellular Cardiology, 2022, 166, 137-151.	1.9	4
11	Engineering complexity in human tissue models of cancer. Advanced Drug Delivery Reviews, 2022, 184, 114181.	13.7	10
12	Homogeneous Distribution of Exogenous Cells onto De-epithelialized Rat Trachea via Instillation of Cell-Loaded Hydrogel. ACS Biomaterials Science and Engineering, 2022, 8, 82-88.	5.2	5
13	Engineering and Characterization of an Optogenetic Model of the Human Neuromuscular Junction. Journal of Visualized Experiments, 2022, , .	0.3	0
14	Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nature Biomedical Engineering, 2022, 6, 327-338.	22.5	25
15	A multi-organ chip with matured tissue niches linked by vascular flow. Nature Biomedical Engineering, 2022, 6, 351-371.	22.5	162
16	A guide to the organ-on-a-chip. Nature Reviews Methods Primers, 2022, 2, .	21.2	247
17	Pathological remodeling of distal lung matrix in end-stage cystic fibrosis patients. Journal of Cystic Fibrosis, 2022, 21, 1027-1035.	0.7	4
18	Extracellular Vesicles in Cardiac Regeneration: Potential Applications for Tissues-on-a-Chip. Trends in Biotechnology, 2021, 39, 755-773.	9.3	18

#	Article	IF	CITATIONS
19	Gut bioengineering strategies for regenerative medicine. American Journal of Physiology - Renal Physiology, 2021, 320, G1-G11.	3.4	4
20	Cell type–specific microRNA therapies for myocardial infarction. Science Translational Medicine, 2021, 13, .	12.4	23
21	Engineered Vascularized Flaps, Composed of Polymeric Soft Tissue and Live Bone, Repair Complex Tibial Defects. Advanced Functional Materials, 2021, 31, 2008687.	14.9	19
22	Engineered models of tumor metastasis with immune cell contributions. IScience, 2021, 24, 102179.	4.1	13
23	Sustained Delivery of SB-431542, a Type I Transforming Growth Factor Beta-1 Receptor Inhibitor, to Prevent Arthrofibrosis. Tissue Engineering - Part A, 2021, 27, 1411-1421.	3.1	9
24	Emerging technologies provide insights on cancer extracellular matrix biology and therapeutics. IScience, 2021, 24, 102475.	4.1	9
25	Machine Learning Techniques to Classify Healthy and Diseased Cardiomyocytes by Contractility Profile. ACS Biomaterials Science and Engineering, 2021, 7, 3043-3052.	5.2	13
26	Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell, 2021, 28, 993-1015.	11.1	36
27	Human Serum Enhances Biomimicry of Engineered Tissue Models of Bone and Cancer. Frontiers in Bioengineering and Biotechnology, 2021, 9, 658472.	4.1	5
28	Lessons from Biology: Engineering Design Considerations for Modeling Human Hematopoiesis. Current Stem Cell Reports, 2021, 7, 174-184.	1.6	3
29	Bioengineered optogenetic model of human neuromuscular junction. Biomaterials, 2021, 276, 121033.	11.4	20
30	Organs-on-a-chip models for biological research. Cell, 2021, 184, 4597-4611.	28.9	96
31	Non-destructive vacuum-assisted measurement of lung elastic modulus. Acta Biomaterialia, 2021, 131, 370-380.	8.3	5
32	Horizontal transfer of the stemness-related markers EZH2 and GLI1 by neuroblastoma-derived extracellular vesicles in stromal cells. Translational Research, 2021, 237, 82-97.	5.0	8
33	Engineered Vascularized Flaps, Composed of Polymeric Soft Tissue and Live Bone, Repair Complex Tibial Defects (Adv. Funct. Mater. 44/2021). Advanced Functional Materials, 2021, 31, 2170325.	14.9	0
34	milliPillar: A Platform for the Generation and Real-Time Assessment of Human Engineered Cardiac Tissues. ACS Biomaterials Science and Engineering, 2021, 7, 5215-5229.	5.2	14
35	Tissue-Engineered Bone Tumor as a Reproducible Human <i>in Vitro</i> Model for Studies of Anticancer Drugs. Toxicological Sciences, 2020, 173, 65-76.	3.1	8
36	Heart regeneration in mouse and human: a bioengineering perspective. Current Opinion in Physiology, 2020, 14, 56-63.	1.8	1

#	Article	IF	CITATIONS
37	In vitro models of neuromuscular junctions and their potential for novel drug discovery and development. Expert Opinion on Drug Discovery, 2020, 15, 307-317.	5.0	12
38	Multiday maintenance of extracorporeal lungs using cross-circulation with conscious swine. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1640-1653.e18.	0.8	38
39	Tissue engineered autologous cartilage-bone grafts for temporomandibular joint regeneration. Science Translational Medicine, 2020, 12, .	12.4	37
40	Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs. Nature Medicine, 2020, 26, 1102-1113.	30.7	56
41	Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab on A Chip, 2020, 20, 4357-4372.	6.0	69
42	Dynamic Hydrogels for Investigating Vascularization. Cell Stem Cell, 2020, 27, 697-698.	11.1	4
43	Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Frontiers in Bioengineering and Biotechnology, 2020, 8, 269.	4.1	6
44	From Arteries to Capillaries: Approaches to Engineering Human Vasculature. Advanced Functional Materials, 2020, 30, 1910811.	14.9	74
45	Pulsed electromagnetic fields promote repair of focal articular cartilage defects with engineered osteochondral constructs. Biotechnology and Bioengineering, 2020, 117, 1584-1596.	3.3	16
46	Embryonic stem cells as a cell source for tissue engineering. , 2020, , 467-490.		8
47	Cardiac tissue engineering. , 2020, , 593-616.		2
48	The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell, 2020, 26, 482-502.	11.1	230
49	Bioreactors in Regenerative Medicine. , 2019, , 787-803.		2
50	Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype. Nature Protocols, 2019, 14, 2781-2817.	12.0	101
51	A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell, 2019, 176, 913-927.e18.	28.9	398
52	Regeneration of severely damaged lungs using an interventional cross-circulation platform. Nature Communications, 2019, 10, 1985.	12.8	42
53	Tissue engineered models of healthy and malignant human bone marrow. Advanced Drug Delivery Reviews, 2019, 140, 78-92.	13.7	18
54	Bioengineering approaches to organ preservation <i>ex vivo</i> . Experimental Biology and Medicine, 2019, 244, 630-645.	2.4	23

#	Article	IF	CITATIONS
55	Rapid Wire Casting: A Multimaterial Microphysiological Platform Enabled by Rapid Casting of Elastic Microwires (Adv. Healthcare Mater. 5/2019). Advanced Healthcare Materials, 2019, 8, 1970019.	7.6	1
56	Quantification of human neuromuscular function through optogenetics. Theranostics, 2019, 9, 1232-1246.	10.0	44
57	A Multimaterial Microphysiological Platform Enabled by Rapid Casting of Elastic Microwires. Advanced Healthcare Materials, 2019, 8, e1801187.	7.6	26
58	Cell replacement in human lung bioengineering. Journal of Heart and Lung Transplantation, 2019, 38, 215-224.	0.6	28
59	Human Tissue-Engineered Model of Myocardial Ischemia–Reperfusion Injury. Tissue Engineering - Part A, 2019, 25, 711-724.	3.1	42
60	Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell, 2018, 22, 310-324.	11.1	479
61	Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nature Biomedical Engineering, 2018, 2, 293-303.	22.5	249
62	Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature, 2018, 556, 239-243.	27.8	921
63	Perfusion Enhances Hypertrophic Chondrocyte Matrix Deposition, But Not the Bone Formation. Tissue Engineering - Part A, 2018, 24, 1022-1033.	3.1	8
64	Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1256-1261.	7.1	163
65	Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Biomaterials, 2018, 173, 47-57.	11.4	51
66	Dual IFN-γ/hypoxia priming enhances immunosuppression of mesenchymal stromal cells through regulatory proteins and metabolic mechanisms. Journal of Immunology and Regenerative Medicine, 2018, 1, 45-56.	0.4	39
67	Testing the potency of antiâ€TNFâ€Î± and antiâ€ILâ€I β drugs using spheroid cultures of human osteoarthritic chondrocytes and donorâ€matched chondrogenically differentiated mesenchymal stem cells. Biotechnology Progress, 2018, 34, 1045-1058.	2.6	13
68	The influence of hypoxia and IFN-Î ³ on the proteome and metabolome of therapeutic mesenchymal stem cells. Biomaterials, 2018, 167, 226-234.	11.4	74
69	Ectopic implantation of juvenile osteochondral tissues recapitulates endochondral ossification. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 468-478.	2.7	6
70	Paracrine Effects of Mesenchymal Stromal Cells Cultured in Three-Dimensional Settings on Tissue Repair. ACS Biomaterials Science and Engineering, 2018, 4, 1162-1175.	5.2	28
71	Left-Ventricular Assist Device Impact on Aortic Valve Mechanics, Proteomics and Ultrastructure. Annals of Thoracic Surgery, 2018, 105, 572-580.	1.3	17
72	Tissue Engineered Bone Differentiated From Human Adipose Derived Stem Cells Inhibit Posterolateral Fusion in an Athymic Rat Model. Spine, 2018, 43, 533-541.	2.0	2

#	Article	IF	CITATIONS
73	Live imaging of stem cells in the germarium of the Drosophila ovary using a reusable gas-permeable imaging chamber. Nature Protocols, 2018, 13, 2601-2614.	12.0	12
74	In Vitro Models of Ischemia-Reperfusion Injury. Regenerative Engineering and Translational Medicine, 2018, 4, 142-153.	2.9	48
75	Can We Engineer a Human Cardiac Patch for Therapy?. Circulation Research, 2018, 123, 244-265.	4.5	121
76	Shortcomings of Animal Models and the Rise of Engineered Human Cardiac Tissue. ACS Biomaterials Science and Engineering, 2017, 3, 1884-1897.	5.2	26
77	Tissue-Engineered Model of Human Osteolytic Bone Tumor. Tissue Engineering - Part C: Methods, 2017, 23, 98-107.	2.1	21
78	Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2556-2561.	7.1	43
79	Constrained Cage Culture Improves Engineered Cartilage Functional Properties by Enhancing Collagen Network Stability. Tissue Engineering - Part A, 2017, 23, 847-858.	3.1	11
80	Cross-circulation for extracorporeal support and recovery of the lung. Nature Biomedical Engineering, 2017, 1, .	22.5	39
81	Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model. Biomaterials, 2017, 132, 59-71.	11.4	79
82	Alternative direct stem cell derivatives defined by stem cell location and graded Wnt signalling. Nature Cell Biology, 2017, 19, 433-444.	10.3	58
83	Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair. Biomaterials, 2017, 139, 202-212.	11.4	58
84	Biomimetic Approaches for Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2017, 23, 480-493.	4.8	69
85	Controlled delivery and minimally invasive imaging of stem cells in the lung. Scientific Reports, 2017, 7, 13082.	3.3	34
86	Functional vascularized lung grafts for lung bioengineering. Science Advances, 2017, 3, e1700521.	10.3	72
87	Extracellular Vesicles and their Versatile Roles in Tissue Engineering. Tissue Engineering - Part A, 2017,	3.1	0
88	A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy. Lab on A Chip, 2017, 17, 3264-3271.	6.0	39
89	Bioreactor model of neuromuscular junction with electrical stimulation for pharmacological potency testing. Integrative Biology (United Kingdom), 2017, 9, 956-967.	1.3	14
90	Emerging Impact of Extracellular Vesicles on Tissue Engineering and Regeneration. Tissue Engineering - Part A, 2017, 23, 1210-1211.	3.1	5

#	Article	IF	CITATIONS
91	Tissue engineering of the heart: An evolving paradigm. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 593-595.	0.8	11
92	Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction. Stem Cells Translational Medicine, 2017, 6, 970-981.	3.3	26
93	Engineering Vascular Niche for Bone Tissue Regeneration. , 2017, , 517-529.		0
94	Minimally Invasive In Situ Imaging of Intra-tracheally Administered Therapeutic Stem Cells in the Lung. , 2017, , .		0
95	Abstract 20932: Dynamic Regulation of Myocardial Long Noncoding RNAs in Human Heart Failure and Reverse Remodeling With Left Ventricular Assist Device Support. Circulation, 2017, 136, .	1.6	0
96	Recapitulating the Size and Cargo of Tumor Exosomes in a Tissue-Engineered Model. Theranostics, 2016, 6, 1119-1130.	10.0	68
97	Microgravity and Microgravity Analogue Studies of Cartilage and Cardiac Tissue Engineering. , 2016, , 175-195.		0
98	Mesenchymal Stem Cells for Osteochondral Tissue Engineering. Methods in Molecular Biology, 2016, 1416, 35-54.	0.9	12
99	Protection of Organ Vasculature By Endothelial Overexpression of HLA-G. Biology of Blood and Marrow Transplantation, 2016, 22, S362.	2.0	0
100	Optimizing nutrient channel spacing and revisiting TGF-beta in large engineered cartilage constructs. Journal of Biomechanics, 2016, 49, 2089-2094.	2.1	8
101	Should we use cells, biomaterials, or tissue engineering for cartilage regeneration?. Stem Cell Research and Therapy, 2016, 7, 56.	5.5	142
102	Bioengineered Models of Solid Human Tumors for Cancer Research. Methods in Molecular Biology, 2016, 1502, 203-211.	0.9	14
103	High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties. Journal of Biomechanics, 2016, 49, 1909-1917.	2.1	49
104	Transcriptional patterns of reverse remodeling with left ventricular assist devices: a consistent signature. Expert Review of Medical Devices, 2016, 13, 1029-1034.	2.8	7
105	Nutrient Channels Aid the Growth of Articular Surface-Sized Engineered Cartilage Constructs. Tissue Engineering - Part A, 2016, 22, 1063-1074.	3.1	20
106	Distilling complexity to advance cardiac tissue engineering. Science Translational Medicine, 2016, 8, 342ps13.	12.4	138
107	Tissue-engineered autologous grafts for facial bone reconstruction. Science Translational Medicine, 2016, 8, 343ra83.	12.4	187
108	Extracellular matrix components and culture regimen selectively regulate cartilage formation by self-assembling human mesenchymal stem cells in vitro and in vivo. Stem Cell Research and Therapy, 2016, 7, 183.	5.5	25

#	Article	IF	CITATIONS
109	Modular Assembly Approach to Engineer Geometrically Precise Cardiovascular Tissue. Advanced Healthcare Materials, 2016, 5, 900-906.	7.6	19
110	Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-β and is ameliorated by the alternative supplementation of latent TGF-β. Biomaterials, 2016, 77, 173-185.	11.4	62
111	Tissue-Engineering for the Study of Cardiac Biomechanics. Journal of Biomechanical Engineering, 2016, 138, 021010.	1.3	8
112	Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nature Communications, 2016, 7, 10312.	12.8	140
113	Modeling tumor microenvironments using custom-designed biomaterial scaffolds. Current Opinion in Chemical Engineering, 2016, 11, 94-105.	7.8	66
114	Tissue Engineering and Regenerative Medicine 2015: A Year in Review. Tissue Engineering - Part B: Reviews, 2016, 22, 101-113.	4.8	64
115	Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Experimental Cell Research, 2016, 347, 1-13.	2.6	131
116	Bioengineering methods for myocardial regeneration. Advanced Drug Delivery Reviews, 2016, 96, 195-202.	13.7	55
117	Rapid retraction of microvolume aqueous plugs traveling in a wettable capillary. Applied Physics Letters, 2015, 107, 144101.	3.3	6
118	Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials, 2015, 60, 82-91.	11.4	128
119	Bioengineered tumors. Bioengineered, 2015, 6, 73-76.	3.2	8
120	Synergistic Effects of Hypoxia and Morphogenetic Factors on Early Chondrogenic Commitment of Human Embryonic Stem Cells in Embryoid Body Culture. Stem Cell Reviews and Reports, 2015, 11, 228-241.	5.6	20
121	Tissue-engineered models of human tumors for cancer research. Expert Opinion on Drug Discovery, 2015, 10, 257-268.	5.0	76
122	Matrix Production in Large Engineered Cartilage Constructs Is Enhanced by Nutrient Channels and Excess Media Supply. Tissue Engineering - Part C: Methods, 2015, 21, 747-757.	2.1	32
123	Macrophages Modulate Engineered Human Tissues for Enhanced Vascularization and Healing. Annals of Biomedical Engineering, 2015, 43, 616-627.	2.5	64
124	Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opinion on Biological Therapy, 2015, 15, 1583-1599.	3.1	38
125	"The state of the heartâ€; Recent advances in engineering human cardiac tissue from pluripotent stem cells. Experimental Biology and Medicine, 2015, 240, 1008-1018.	2.4	8
126	Advanced methods for tissue engineering and regenerative medicine. Methods, 2015, 84, 1-2.	3.8	2

#	Article	IF	CITATIONS
127	Seven Actionable Strategies for Advancing Women in Science, Engineering, and Medicine. Cell Stem Cell, 2015, 16, 221-224.	11.1	36
128	Immune modulation as a therapeutic strategy in bone regeneration. Journal of Experimental Orthopaedics, 2015, 2, 1.	1.8	82
129	Engineering physiologically stiff and stratified human cartilage by fusing condensed mesenchymal stem cells. Methods, 2015, 84, 109-114.	3.8	15
130	Bupivacaine Mandibular Nerve Block Affects Intraoperative Blood Pressure and Heart Rate in a Yucatan Miniature Swine Mandibular Condylectomy Model: A Pilot Study. Journal of Investigative Surgery, 2015, 28, 32-39.	1.3	2
131	Controlled release of cytokines using silk-biomaterials for macrophage polarization. Biomaterials, 2015, 73, 272-283.	11.4	110
132	A protein for healing infarcted hearts. Nature, 2015, 525, 461-462.	27.8	3
133	Targeted delivery of liquid microvolumes into the lung. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11530-11535.	7.1	32
134	Endothelial Cells Enhance the Migration of Bovine Meniscus Cells. Arthritis and Rheumatology, 2015, 67, 182-192.	5.6	15
135	Passage-dependent relationship between mesenchymal stem cell mobilization and chondrogenic potential. Osteoarthritis and Cartilage, 2015, 23, 319-327.	1.3	27
136	Clinical translation of controlled protein delivery systems for tissue engineering. Drug Delivery and Translational Research, 2015, 5, 101-115.	5.8	36
137	Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials, 2015, 37, 194-207.	11.4	568
138	Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomaterialia, 2015, 11, 27-36.	8.3	220
139	Nutrient channels and stirring enhanced the composition and stiffness of large cartilage constructs. Journal of Biomechanics, 2014, 47, 3847-3854.	2.1	27
140	Cardiac Tissue Engineering. , 2014, , 771-792.		5
141	Human adipose-derived cells can serve as a single-cell source for the <i>in vitro</i> cultivation of vascularized bone grafts. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 629-639.	2.7	23
142	Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway. Experimental Cell Research, 2014, 320, 79-91.	2.6	26
143	Bioengineered human tumor within a bone niche. Biomaterials, 2014, 35, 5785-5794.	11.4	67
144	The Current Status of iPS Cells in Cardiac Research and Their Potential for Tissue Engineering and Regenerative Medicine. Stem Cell Reviews and Reports, 2014, 10, 177-190.	5.6	53

#	Article	IF	CITATIONS
145	The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials, 2014, 35, 4477-4488.	11.4	728
146	Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules, 2014, 15, 635-643.	5.4	306
147	Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development. Experimental Cell Research, 2014, 321, 297-306.	2.6	39
148	Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6940-6945.	7.1	166
149	Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 84-91.	17.5	497
150	Hierarchically Ordered Nanopatterns for Spatial Control of Biomolecules. ACS Nano, 2014, 8, 11846-11853.	14.6	23
151	Microscale technologies for regulating human stem cell differentiation. Experimental Biology and Medicine, 2014, 239, 1255-1263.	2.4	21
152	Embryonic Stem Cells as a Cell Source for Tissue Engineering. , 2014, , 609-638.		5
153	Principles of Bioreactor Design for Tissue Engineering. , 2014, , 261-278.		2
154	Delivering life's blood: emerging technologies, current opportunities and challenges. Current Opinion in Chemical Engineering, 2014, 3, v-vi.	7.8	1
155	Electrical stimulation enhances cell migration and integrative repair in the meniscus. Scientific Reports, 2014, 4, 3674.	3.3	82
156	Natural Cardiac Extracellular Matrix Hydrogels for Cultivation of Human Stem Cell-Derived Cardiomyocytes. Methods in Molecular Biology, 2014, 1181, 69-81.	0.9	31
157	In Vitro Mesenchymal Trilineage Differentiation and Extracellular Matrix Production by Adipose and Bone Marrow Derived Adult Equine Multipotent Stromal Cells on a Collagen Scaffold. Stem Cell Reviews and Reports, 2013, 9, 858-872.	5.6	57
158	Insulin, Ascorbate, and Glucose Have a Much Greater Influence Than Transferrin and Selenous Acid on the <i>In Vitro</i> Growth of Engineered Cartilage in Chondrogenic Media. Tissue Engineering - Part A, 2013, 19, 1941-1948.	3.1	42
159	Bioreactors for Tissue Engineering. , 2013, , 1178-1194.		2
160	Cardiac Muscle Tissue Engineering. , 2013, , 1262-1276.		1
161	The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials, 2013, 34, 9830-9841.	11.4	99
162	Patterning pluripotency in embryonic stem cells. Stem Cells, 2013, 31, 1806-1815.	3.2	15

#	Article	IF	CITATIONS
163	Bioengineering heart tissue for in vitro testing. Current Opinion in Biotechnology, 2013, 24, 926-932.	6.6	31
164	Physical influences on stem cells. Stem Cell Research and Therapy, 2013, 4, 153.	5.5	4
165	Principles of engineering tissue regeneration (Sun Valley 2012). IBMS BoneKEy, 2013, 10, .	0.0	3
166	Transient hypoxia improves matrix properties in tissue engineered cartilage. Journal of Orthopaedic Research, 2013, 31, 544-553.	2.3	16
167	Micropatterning of cells reveals chiral morphogenesis. Stem Cell Research and Therapy, 2013, 4, 24.	5.5	28
168	Supplementation of Exogenous Adenosine 5′-Triphosphate Enhances Mechanical Properties of 3D Cell–Agarose Constructs for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2013, 19, 2188-2200.	3.1	20
169	Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells. Lab on A Chip, 2013, 13, 355-364.	6.0	51
170	Sequential Application of Steady and Pulsatile Medium Perfusion Enhanced the Formation of Engineered Bone. Tissue Engineering - Part A, 2013, 19, 1244-1254.	3.1	13
171	Macrophages modulate the viability and growth of human mesenchymal stem cells. Journal of Cellular Biochemistry, 2013, 114, 220-229.	2.6	211
172	Age-Related Carbonylation of Fibrocartilage Structural Proteins Drives Tissue Degenerative Modification. Chemistry and Biology, 2013, 20, 922-934.	6.0	50
173	Decellularization of Human and Porcine Lung Tissues for Pulmonary Tissue Engineering. Annals of Thoracic Surgery, 2013, 96, 1046-1056.	1.3	203
174	Bioreactor engineering of stem cell environments. Biotechnology Advances, 2013, 31, 1020-1031.	11.7	53
175	The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials, 2013, 34, 393-401.	11.4	71
176	Biomimetic electrical stimulation platform for neural differentiation of retinal progenitor cells. , 2013, 2013, 5666-9.		4
177	Assembly of complex cell microenvironments using geometrically docked hydrogel shapes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4551-4556.	7.1	76
178	Purinergic responses of chondrogenic stem cells to dynamic loading. Journal of the Serbian Chemical Society, 2013, 78, 1865-1874.	0.8	4
179	Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors. Methods in Molecular Biology, 2013, 1202, 173-184.	0.9	14
180	Noninvasive Imaging of Myocyte Apoptosis Following Application of a Stem Cell–Engineered Delivery Platform to Acutely Infarcted Myocardium. Journal of Nuclear Medicine, 2013, 54, 977-983.	5.0	19

#	Article	IF	CITATIONS
181	Electrical stimulation via a biocompatible conductive polymer directs retinal progenitor cell differentiation. , 2013, 2013, 1627-31.		10
182	Biomimetic Platforms for Tissue Engineering. Israel Journal of Chemistry, 2013, 53, 767-776.	2.3	1
183	Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue. , 2013, 2013, 6219-23.		14
184	Engineering bone tissue substitutes from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8680-8685.	7.1	196
185	Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts. Methods in Molecular Biology, 2013, 1202, 57-78.	0.9	17
186	HeLiVa platform: integrated heart-liver-vascular systems for drug testing in human health and disease. Stem Cell Research and Therapy, 2013, 4, S8.	5.5	67
187	Vascular Endothelial Growth Factor Secretion by Nonmyocytes Modulates Connexin-43 Levels in Cardiac Organoids. Tissue Engineering - Part A, 2012, 18, 1771-1783.	3.1	41
188	Engineering bone tissue from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8705-8709.	7.1	153
189	Optimizing Dynamic Interactions between a Cardiac Patch and Inflammatory Host Cells. Cells Tissues Organs, 2012, 195, 171-182.	2.3	34
190	Biofabrication enables efficient interrogation and optimization of sequential culture of endothelial cells, fibroblasts and cardiomyocytes for formation of vascular cords in cardiac tissue engineering. Biofabrication, 2012, 4, 035002.	7.1	30
191	Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 2012, 84, 1791-1805.	45.6	39
192	Feasibility of Long-Distance Transfer for High Resolution Optical Mapping of Cardiac Tissue Constructs. Biophysical Journal, 2012, 102, 676a.	0.5	1
193	Concise Review: Personalized Human Bone Grafts for Reconstructing Head and Face. Stem Cells Translational Medicine, 2012, 1, 64-69.	3.3	77
194	Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia, 2012, 8, 2483-2492.	8.3	210
195	Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials, 2012, 33, 8329-8342.	11.4	88
196	Time-Dependent Processes in Stem Cell-Based Tissue Engineering of Articular Cartilage. Stem Cell Reviews and Reports, 2012, 8, 863-881.	5.6	86
197	Channelled scaffolds for engineering myocardium with mechanical stimulation. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 748-756.	2.7	43
198	Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e12-e23.	2.7	114

#	Article	IF	CITATIONS
199	Effects of Pamidronate on Human Alveolar Osteoblasts In Vitro. Journal of Oral and Maxillofacial Surgery, 2012, 70, 1081-1092.	1.2	36
200	Tissue Engineering Strategies for Skeletal Repair. HSS Journal, 2012, 8, 57-58.	1.7	4
201	Bioreactors in Tissue Engineering. , 2012, , 217-227.		4
202	Myocardial Regeneration through Tissue Engineering. FASEB Journal, 2012, 26, 459.4.	0.5	0
203	Patterning osteogenesis by inducible gene expression in microfluidic culture systems. Integrative Biology (United Kingdom), 2011, 3, 39-47.	1.3	34
204	Composite scaffold provides a cell delivery platform for cardiovascular repair. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7974-7979.	7.1	241
205	Bioreactor Cultivation of Functional Bone Grafts. Methods in Molecular Biology, 2011, 698, 231-241.	0.9	21
206	Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12295-12300.	7.1	209
207	Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine. Annual Review of Biomedical Engineering, 2011, 13, 245-267.	12.3	172
208	Biomimetic Platforms for Human Stem Cell Research. Cell Stem Cell, 2011, 8, 252-261.	11.1	133
209	Engineering Tissue with BioMEMS. IEEE Pulse, 2011, 2, 28-34.	0.3	13
210	Adipose tissue as a stem cell source for musculoskeletal regeneration. Frontiers in Bioscience - Scholar, 2011, S3, 69-81.	2.1	47
211	Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos. Stem Cells International, 2011, 2011, 1-9.	2.5	20
212	Potential pathophysiological mechanisms in osteonecrosis of the jaw. Annals of the New York Academy of Sciences, 2011, 1218, 62-79.	3.8	138
213	Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials, 2011, 32, 2812-2820.	11.4	238
214	Hybrid Gel Composed of Native Heart Matrix and Collagen Induces Cardiac Differentiation of Human Embryonic Stem Cells without Supplemental Growth Factors. Journal of Cardiovascular Translational Research, 2011, 4, 605-615.	2.4	161
215	Optimization of electrical stimulation parameters for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e115-e125.	2.7	131
216	In vitro platforms for tissue engineering: implications for basic research and clinical translation. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e164-e167.	2.7	47

#	Article	IF	CITATIONS
217	Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnology and Bioengineering, 2011, 108, 1159-1170.	3.3	129
218	Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study. Acta Biomaterialia, 2011, 7, 144-151.	8.3	112
219	Lipolytic Function of Adipocyte/Endothelial Cocultures. Tissue Engineering - Part A, 2011, 17, 1437-1444.	3.1	25
220	Micropatterning chiral morphogenesis. Communicative and Integrative Biology, 2011, 4, 745-748.	1.4	20
221	Microbioreactors for Stem Cell Research. Biological and Medical Physics Series, 2011, , 203-225.	0.4	1
222	Adipogenic Differentiation of Human Adipose-Derived Stem Cells on 3D Silk Scaffolds. Methods in Molecular Biology, 2011, 702, 319-330.	0.9	33
223	Tissue Engineering Strategies for Cardiac Regeneration. , 2011, , 443-475.		1
224	Engineering Functional Bone Grafts. , 2011, , 221-235.		3
225	In Vitro Model of Vascularized Bone: Synergizing Vascular Development and Osteogenesis. PLoS ONE, 2011, 6, e28352.	2.5	107
226	Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthritis and Cartilage, 2010, 18, 714-723.	1.3	99
227	Enhancing annulus fibrosus tissue formation in porous silk scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 92A, 43-51.	4.0	63
228	Silk hydrogel for cartilage tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 84-90.	3.4	167
229	Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnology Progress, 2010, 26, 565-572.	2.6	65
230	Scaffold stiffness affects the contractile function of threeâ€dimensional engineered cardiac constructs. Biotechnology Progress, 2010, 26, 1382-1390.	2.6	62
231	Bioactive Scaffolds for Engineering Vascularized Cardiac Tissues. Macromolecular Bioscience, 2010, 10, 1286-1301.	4.1	41
232	Macromol. Biosci. 11/2010. Macromolecular Bioscience, 2010, 10, n/a-n/a.	4.1	0
233	Micropatterned three-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 205-215.	2.7	91
234	Bone Grafts Engineered from Human Adipose-Derived Stem Cells in Perfusion Bioreactor Culture. Tissue Engineering - Part A, 2010, 16, 179-189.	3.1	157

#	Article	IF	CITATIONS
235	Tubular silk scaffolds for small diameter vascular grafts. Organogenesis, 2010, 6, 217-224.	1.2	147
236	Adipose Tissue Engineering for Soft Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2010, 16, 413-426.	4.8	212
237	Engineering anatomically shaped human bone grafts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3299-3304.	7.1	367
238	Effects of Hyperinsulinemia on Lipolytic Function of Three-Dimensional Adipocyte/Endothelial Co-Cultures. Tissue Engineering - Part C: Methods, 2010, 16, 1157-1165.	2.1	28
239	Surface-patterned electrode bioreactor for electrical stimulation. Lab on A Chip, 2010, 10, 692.	6.0	91
240	Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010, 2, 022001.	7.1	492
241	Challenges in Cardiac Tissue Engineering. Tissue Engineering - Part B: Reviews, 2010, 16, 169-187.	4.8	431
242	Geometric control of human stem cell morphology and differentiation. Integrative Biology (United) Tj ETQq0 0 0	rgBT /Ovei	rlock 10 Tf 5
243	Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab on A Chip, 2010, 10, 3277.	6.0	81
244	Biomimetic Approaches to Design of Tissue Engineering Bioreactors. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 115-129.	0.5	0
245	Engineering human tissues. Scripta Medica, 2010, 41, 83-87.	0.1	0
246	Optical Mapping of Impulse Propagation in Engineered Cardiac Tissue. Tissue Engineering - Part A, 2009, 15, 851-860.	3.1	52
247	Controllable Expansion of Primary Cardiomyocytes by Reversible Immortalization. Human Gene Therapy, 2009, 20, 1687-1696.	2.7	24
248	Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. Journal of Controlled Release, 2009, 134, 81-90.	9.9	385
249	Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Experimental Cell Research, 2009, 315, 3611-3619.	2.6	234
250	Geometry and force control of cell function. Journal of Cellular Biochemistry, 2009, 108, 1047-1058.	2.6	57
251	Hypoxia and stem cellâ€based engineering of mesenchymal tissues. Biotechnology Progress, 2009, 25, 32-42.	2.6	203

Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 2009, 4, 155-173. 12.0 463

#	Article	IF	CITATIONS
253	Biomimetic approach to tissue engineering. Seminars in Cell and Developmental Biology, 2009, 20, 665-673.	5.0	135
254	Biodegradable Fibrous Scaffolds with Tunable Properties Formed from Photo-Cross-Linkable Poly(glycerol sebacate). ACS Applied Materials & Interfaces, 2009, 1, 1878-1886.	8.0	94
255	Engineered Microenvironments for Controlled Stem Cell Differentiation. Tissue Engineering - Part A, 2009, 15, 205-219.	3.1	429
256	Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. , 2009, 2009, 6517-21.		44
257	Micro-bioreactor arrays for controlling cellular environments: Design principles for human embryonic stem cell applications. Methods, 2009, 47, 81-89.	3.8	110
258	Percutaneous Cell Delivery into the Heart Using Hydrogels Polymerizing in Situ. Cell Transplantation, 2009, 18, 297-304.	2.5	142
259	A Biocompatible Endothelial Cell Delivery System for in Vitro Tissue Engineering. Cell Transplantation, 2009, 18, 731-743.	2.5	31
260	Chitosan-Collagen Based Channeled Scaffold for Cardiac Tissue Engineering. , 2009, , .		1
261	Subpixel Texture Correlation for Contractile Behaviors of Engineered Cardiac Tissue. , 2009, , .		Ο
262	The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs. Biomaterials, 2008, 29, 4292-4299.	11.4	37
263	Engineering of Functional Cartilage Tissue Using Stem Cells from Synovial Lining: A Preliminary Study. Clinical Orthopaedics and Related Research, 2008, 466, 1880-1889.	1.5	72
264	Effects of electrical stimulation in C2C12 muscle constructs. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 279-287.	2.7	102
265	Preâ€ŧreatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. Journal of Biomedical Materials Research - Part A, 2008, 86A, 713-724.	4.0	166
266	Engineered microenvironments for human stem cells. Birth Defects Research Part C: Embryo Today Reviews, 2008, 84, 335-347.	3.6	27
267	Gel spinning of silk tubes for tissue engineering. Biomaterials, 2008, 29, 4650-4657.	11.4	131
268	Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 2008, 3, 719-738.	12.0	249
269	Synovium-derived stem cell-based chondrogenesis. Differentiation, 2008, 76, 1044-1056.	1.9	127
270	Engineering custom-designed osteochondral tissue grafts. Trends in Biotechnology, 2008, 26, 181-189.	9.3	133

#	Article	IF	CITATIONS
271	Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. Journal of the Royal Society Interface, 2008, 5, 929-939.	3.4	57
272	Bioreactors for tissue engineering. , 2008, , 483-506.		3
273	Patterning Stem Cell Differentiation. Cell Stem Cell, 2008, 3, 362-363.	11.1	15
274	Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Engineering - Part A, 2008, 14, 413-421.	3.1	337
275	Effects of Initial Seeding Density and Fluid Perfusion Rate on Formation of Tissue-Engineered Bone. Tissue Engineering - Part A, 2008, 14, 1809-1820.	3.1	213
276	The Fundamentals of Tissue Engineering: Scaffolds and Bioreactors. Novartis Foundation Symposium, 2008, , 34-51.	1.1	43
277	Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Current Stem Cell Research and Therapy, 2008, 3, 254-264.	1.3	280
278	Cell nutrition. , 2008, , 327-362.		6
279	Engineered tissue grafts: A new class of biomaterials for medical use. Chemical Industry and Chemical Engineering Quarterly, 2008, 14, 211-214.	0.7	0
280	Two-Photon Imaging for the Non-Invasive Assessment of Electric Field Effects on Osteogenic Stem Cell Differentiation. , 2008, , .		0
281	Synthetic Oxygen Carriers in Cardiac Tissue Engineering. Artificial Cells, Blood Substitutes, and Biotechnology, 2007, 35, 135-148.	0.9	24
282	Vascular Progenitor Cells Isolated From Human Embryonic Stem Cells Give Rise to Endothelial and Smooth Muscle–Like Cells and Form Vascular Networks In Vivo. Circulation Research, 2007, 101, 286-294.	4.5	219
283	Practical Aspects of Cardiac Tissue Engineering With Electrical Stimulation. Methods in Molecular Medicine, 2007, 140, 291-307.	0.8	38
284	Nanofabrication and Microfabrication of Functional Materials for Tissue Engineering. Tissue Engineering, 2007, 13, 1867-1877.	4.6	117
285	Micro-bioreactor array for controlling cellular microenvironments. Lab on A Chip, 2007, 7, 710.	6.0	208
286	Principles of Tissue Culture and Bioreactor Design. , 2007, , 155-183.		14
287	Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11298-11303.	7.1	615

288 Embryonic Stem Cells as a Cell Source for Tissue Engineering. , 2007, , 445-458.

0

0

#	Article	IF	CITATIONS
289	Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials, 2007, 28, 1152-1162.	11.4	335
290	Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 2007, 28, 2706-2717.	11.4	262
291	Silk fibroin microtubes for blood vessel engineering. Biomaterials, 2007, 28, 5271-5279.	11.4	246
292	The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials, 2007, 28, 4068-4077.	11.4	211
293	Microfluidic patterning for fabrication of contractile cardiac organoids. Biomedical Microdevices, 2007, 9, 149-157.	2.8	179
294	Non-Invasive Time-Lapsed Monitoring and Quantification of Engineered Bone-Like Tissue. Annals of Biomedical Engineering, 2007, 35, 1657-1667.	2.5	54
295	Porous silk scaffolds can be used for tissue engineering annulus fibrosus. European Spine Journal, 2007, 16, 1848-1857.	2.2	112
296	Engineering cartilage and bone using human mesenchymal stem cells. Journal of Orthopaedic Science, 2007, 12, 398-404.	1.1	50
297	Three-dimensional Culture of Human Embryonic Stem Cells. Human Cell Culture, 2007, , 149-172.	0.1	1
298	Nanofabrication and Microfabrication of Functional Materials for Tissue Engineering. Tissue Engineering, 2007, .	4.6	1
299	Human Embryonic Stem Cell Culture for Tissue Engineering. , 2006, , 61-82.		2
300	Cell Sources for Cartilage Tissue Engineering. , 2006, , 83-111.		6
301	Lipid-Mediated Gene Transfer for Cartilage Tissue Engineering. , 2006, , 113-127.		0
302	Tissue Engineering: Basic Considerations. , 2006, , 129-155.		3
303	Ligament Tissue Engineering. , 2006, , 191-211.		3
304	Cellular Photoencapsulation in Hydrogels. , 2006, , 213-238.		4
305	Tissue Engineering Human Skeletal Muscle for Clinical Applications. , 2006, , 239-257.		5

#	Article	IF	CITATIONS
307	Tissue-Engineered Blood Vessels. , 2006, , 293-322.		0
308	Tissue Engineering of Bone. , 2006, , 323-373.		6
309	Culture of Neuroendocrine and Neuronal Cells for Tissue Engineering. , 2006, , 375-415.		12
310	Tissue Engineering of the Liver. , 2006, , 417-471.		1
311	Effect of Scaffold Design on Bone MorphologyIn Vitro. Tissue Engineering, 2006, 12, 3417-3429.	4.6	126
312	Cartilage-like Tissue Engineering Using Silk Scaffolds and Mesenchymal Stem Cells. Tissue Engineering, 2006, 12, 2729-2738.	4.6	181
313	Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 2006, 12, 2077-2091.	4.6	296
314	Characterization of Electrical Stimulation Electrodes for Cardiac Tissue Engineering. , 2006, 2006, 845-8.		28
315	Engineering Complex Tissues. Tissue Engineering, 2006, 12, 3307-3339.	4.6	513
316	Mesenchymal Stem Cells for Tissue Engineering. , 2006, , 23-59.		14
317	Tissue Engineering and Developmental Biology: Going Biomimetic. Tissue Engineering, 2006, 12, 3265-3283.	4.6	273
318	Basic Principles of Cell Culture. , 2006, , 1-22.		19
319	Silk based biomaterials to heal critical sized femur defects. Bone, 2006, 39, 922-931.	2.9	214
320	Advanced Tools for Tissue Engineering: Scaffolds, Bioreactors, and Signaling. Tissue Engineering, 2006, 12, 3285-3305.	4.6	255
321	Suppliers List. , 2006, , 473-481.		0
322	Tissue Engineering of Articular Cartilage. , 2006, , 157-189.		4
323	Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: Comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials, 2006, 27, 4993-5002.	11.4	171
324	Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 2006, 27, 6064-6082.	11.4	869

#	Article	IF	CITATIONS
325	A photolithographic method to create cellular micropatterns. Biomaterials, 2006, 27, 4755-4764.	11.4	118
326	Size-based microfluidic enrichment of neonatal rat cardiac cell populations. Biomedical Microdevices, 2006, 8, 231-237.	2.8	71
327	Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials, 2006, 27, 6138-6149.	11.4	171
328	Silk fibroin as an organic polymer for controlled drug delivery. Journal of Controlled Release, 2006, 111, 219-227.	9.9	328
329	Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnology and Bioengineering, 2006, 93, 332-343.	3.3	360
330	Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2in vitro andin vivo. Journal of Biomedical Materials Research - Part A, 2006, 78A, 324-334.	4.0	201
331	Cardiac tissue engineering: effects of bioreactor flow environment on tissue constructs. Journal of Chemical Technology and Biotechnology, 2006, 81, 485-490.	3.2	35
332	Biophysical regulation during cardiac development and application to tissue engineering. International Journal of Developmental Biology, 2006, 50, 233-243.	0.6	57
333	Translation from Research to Applications. Tissue Engineering, 2006, 12, 3341-3364.	4.6	65
334	Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 2006, .	4.6	0
335	Cartilage-like Tissue Engineering Using Silk Scaffolds and Mesenchymal Stem Cells. Tissue Engineering, 2006, .	4.6	1
336	Characterization of Electrical Stimulation Electrodes for Cardiac Tissue Engineering. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
337	Functional Tissue Engineering of Cartilage and Myocardium. , 2005, , 501-530.		2
338	Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro. Journal of Orthopaedic Research, 2005, 23, 164-174.	2.3	71
339	The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005, 26, 147-155.	11.4	725
340	Evaluation of silicone tubing toxicity using tobacco BY2 culture. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 555-560.	2.1	6
341	Tissue Engineering of Cartilage and Myocardium. , 2005, , 99-133.		3
342	It takes a village to grow a tissue. Nature Biotechnology, 2005, 23, 1237-1239.	17.5	43

#	Article	IF	CITATIONS
343	Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro. Osteoarthritis and Cartilage, 2005, 13, 129-138.	1.3	72
344	Development and remodeling of engineered cartilage-explant composites in vitro and in vivo. Osteoarthritis and Cartilage, 2005, 13, 896-905.	1.3	35
345	Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials, 2005, 26, 4442-4452.	11.4	283
346	Silk implants for the healing of critical size bone defects. Bone, 2005, 37, 688-698.	2.9	416
347	Air-Lift Bioreactors for Algal Growth on Flue Gas:Â Mathematical Modeling and Pilot-Plant Studies. Industrial & Engineering Chemistry Research, 2005, 44, 6154-6163.	3.7	135
348	A NOVEL COMPOSITE SCAFFOLD FOR CARDIAC TISSUE ENGINEERING. In Vitro Cellular and Developmental Biology - Animal, 2005, 41, 188.	1.5	120
349	Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1278-H1289.	3.2	232
350	Mechanical Properties and Remodeling of Hybrid Cardiac Constructs Made from Heart Cells, Fibrin, and Biodegradable, Elastomeric Knitted Fabric. Tissue Engineering, 2005, 11, 1122-1132.	4.6	120
351	Cardiac tissue engineering. Journal of the Serbian Chemical Society, 2005, 70, 541-556.	0.8	32
352	Cell Seeding of Polymer Scaffolds. , 2004, 238, 131-146.		31
353	Bone Tissue Engineering Using Human Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow. Annals of Biomedical Engineering, 2004, 32, 112-122.	2.5	483
354	Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds In Vitro. Calcified Tissue International, 2004, 74, 458-468.	3.1	227
355	Engineering cartilageâ€like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnology and Bioengineering, 2004, 88, 379-391.	3.3	285
356	Engineering bone-like tissuein vitro using human bone marrow stem cells and silk scaffolds. Journal of Biomedical Materials Research Part B, 2004, 71A, 25-34.	3.1	319
357	Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18129-18134.	7.1	831
358	Tissue Engineering of Ligaments. Annual Review of Biomedical Engineering, 2004, 6, 131-156.	12.3	313
359	Osteogenic Differentiation of Human Bone Marrow Stromal Cells on Partially Demineralized Bone Scaffoldsin Vitro. Tissue Engineering, 2004, 10, 81-92.	4.6	114
360	Medium perfusion enables engineering of compact and contractile cardiac tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H507-H516.	3.2	296

#	Article	IF	CITATIONS
361	High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnology and Bioengineering, 2003, 82, 403-414.	3.3	268
362	Cultivation in Rotating Bioreactors Promotes Maintenance of Cardiac Myocyte Electrophysiology and Molecular Properties. Tissue Engineering, 2003, 9, 1243-1253.	4.6	96
363	Engineering Functional Cartilage and Cardiac Tissue: In vitro Culture Parameters. , 2003, , 360-376.		2
364	The fundamentals of tissue engineering: scaffolds and bioreactors. Novartis Foundation Symposium, 2003, 249, 34-46; discussion 46-51, 170-4, 239-41.	1.1	5
365	Gene Transfer of a Human Insulin-Like Growth Factor I cDNA Enhances Tissue Engineering of Cartilage. Human Gene Therapy, 2002, 13, 1621-1630.	2.7	86
366	Cell differentiation by mechanical stress. FASEB Journal, 2002, 16, 1-13.	0.5	561
367	Advanced Bioreactor with Controlled Application of Multi-Dimensional Strain For Tissue Engineering. Journal of Biomechanical Engineering, 2002, 124, 742-749.	1.3	195
368	Bone Morphogenetic Proteins-2, -12, and -13 Modulatein VitroDevelopment of Engineered Cartilage. Tissue Engineering, 2002, 8, 591-601.	4.6	94
369	Differential Effects of Growth Factors on Tissue-Engineered Cartilage. Tissue Engineering, 2002, 8, 73-84.	4.6	190
370	Spaceflight bioreactor studies of cells and tissues. Advances in Space Biology and Medicine, 2002, 8, 177-195.	0.5	45
371	Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB Journal, 2002, 16, 1691-1694.	0.5	207
372	Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochemical and Biophysical Research Communications, 2002, 294, 149-154.	2.1	146
373	Tissueâ€engineered composites for the repair of large osteochondral defects. Arthritis and Rheumatism, 2002, 46, 2524-2534.	6.7	295
374	Effects of oxygen on engineered cardiac muscle. Biotechnology and Bioengineering, 2002, 78, 617-625.	3.3	130
375	Microgravity Studies of Cells and Tissues. Annals of the New York Academy of Sciences, 2002, 974, 504-517.	3.8	51
376	Perfusion Improves Tissue Architecture of Engineered Cardiac Muscle. Tissue Engineering, 2002, 8, 175-188.	4.6	308
377	Culture Environments. , 2002, , 97-111.		4
378	IGF-I and Mechanical Environment Interact to Modulate Engineered Cartilage Development. Biochemical and Biophysical Research Communications, 2001, 286, 909-915.	2.1	109

#	Article	IF	CITATIONS
379	Effects of mixing intensity on tissue-engineered cartilage. Biotechnology and Bioengineering, 2001, 72, 402-407.	3.3	147
380	Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. Journal of Biomedical Materials Research Part B, 2001, 55, 229-235.	3.1	139
381	Integration of engineered cartilage. Journal of Orthopaedic Research, 2001, 19, 1089-1097.	2.3	214
382	Selective differentiation of mammalian bone marrow stromal cells cultured on threeâ€dimensional polymer foams. Journal of Biomedical Materials Research Part B, 2001, 55, 229-235.	3.1	20
383	Extractive bioconversion in a four-phase external-loop airlift bioreactor. AICHE Journal, 2000, 46, 1368-1375.	3.6	10
384	Bioreactors for plant engineering: an outlook for further research. Biochemical Engineering Journal, 2000, 4, 89-99.	3.6	143
385	TISSUE ENGINEERING BIOREACTORS. , 2000, , 143-156.		95
386	Microgravity studies on cells and tissues: From Mir to the ISS. , 1999, , .		1
387	Method for Quantitative Analysis of Glycosaminoglycan Distribution in Cultured Natural and Engineered Cartilage. Annals of Biomedical Engineering, 1999, 27, 656-662.	2.5	151
388	Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaedic Research, 1999, 17, 130-138.	2.3	664
389	Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnology and Bioengineering, 1999, 63, 197-205.	3.3	202
390	Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and Bioengineering, 1999, 64, 580-589.	3.3	473
391	Mammalian Chondrocytes Expanded in the Presence of Fibroblast Growth Factor 2 Maintain the Ability to Differentiate and Regenerate Three-Dimensional Cartilaginous Tissue. Experimental Cell Research, 1999, 253, 681-688.	2.6	242
392	Frontiers in Tissue Engineering. Clinical Orthopaedics and Related Research, 1999, 367, S46-S58.	1.5	131
393	Principles of Bioreactor Design for Encapsulated Cells. , 1999, , 395-416.		4
394	Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering. Biotechnology Progress, 1998, 14, 193-202.	2.6	490
395	Culture of organized cell communities. Advanced Drug Delivery Reviews, 1998, 33, 15-30.	13.7	236
396	Collagen in tissue-engineered cartilage: Types, structure, and crosslinks. , 1998, 71, 313-327.		191

#	Article	IF	CITATIONS
397	<i>In vitro</i> differentiation of chick embryo bone marrow stromal cells into cartilaginous and boneâ€like tissues. Journal of Orthopaedic Research, 1998, 16, 181-189.	2.3	142
398	Chondrogenesis in a Cell-Polymer-Bioreactor System. Experimental Cell Research, 1998, 240, 58-65.	2.6	423
399	Mechanical Forces And Growth Factors Utilized In Tissue Engineering. , 1998, , 61-82.		11
400	Tissue engineering of cartilage in space. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13885-13890.	7.1	385
401	Microgravity tissue engineering. In Vitro Cellular and Developmental Biology - Animal, 1997, 33, 381-385.	1.5	181
402	Hydrodynamics and mass transfer in a four-phase external loop air lift bioreactor. Biotechnology Progress, 1995, 11, 420-428.	2.6	23
403	Mechanics of particle motion in three-phase flow. Chemical Engineering Science, 1995, 50, 3285-3295.	3.8	16
404	A fluid dynamic model of the draft tube gas-liquid-solid fluidized bed. Chemical Engineering Science, 1995, 50, 3763-3775.	3.8	8
405	Tissue Engineering: Biomedical Applications. Tissue Engineering, 1995, 1, 151-161.	4.6	135
406	Rhizopus arrhizus lipase-catalyzed interesterification of palm oil midfraction in a gas-lift reactor. Enzyme and Microbial Technology, 1994, 16, 159-162.	3.2	9
407	Biodegradable Polymer Scaffolds for Tissue Engineering. Nature Biotechnology, 1994, 12, 689-693.	17.5	921
408	Local and Overall Mixing Characteristics of the Gas-Liquid-Solid Air Lift Reactor. Industrial & Engineering Chemistry Research, 1994, 33, 698-702.	3.7	13
409	Rhizopus arrhizus lipase-catalyzed interesterification of the midfraction of palm oil to a cocoa butter equivalent fat. Enzyme and Microbial Technology, 1993, 15, 438-443.	3.2	62
410	Bioreactor based on suspended particles of immobilized enzyme. Annals of Biomedical Engineering, 1993, 21, 57-65.	2.5	11
411	Kinetics of immobilized heparinase in human blood. Annals of Biomedical Engineering, 1993, 21, 67-76.	2.5	1
412	Flow regimes and liquid mixing in a draft tube gas-liquid-solid fluidized bed. Chemical Engineering Science, 1992, 47, 3451-3458.	3.8	19
413	Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Engineering, 0, , 110306233438005.	4.6	200