Gordana Vunjak-Novakovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6884575/publications.pdf Version: 2024-02-01

		813	2629
413	42,945	118	194
papers	citations	h-index	g-index
435	435	435	31026
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biodegradable Polymer Scaffolds for Tissue Engineering. Nature Biotechnology, 1994, 12, 689-693.	17.5	921
2	Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature, 2018, 556, 239-243.	27.8	921
3	Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 2006, 27, 6064-6082.	11.4	869
4	Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18129-18134.	7.1	831
5	The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials, 2014, 35, 4477-4488.	11.4	728
6	The inflammatory responses to silk films in vitro and in vivo. Biomaterials, 2005, 26, 147-155.	11.4	725
7	Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaedic Research, 1999, 17, 130-138.	2.3	664
8	Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11298-11303.	7.1	615
9	Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials, 2015, 37, 194-207.	11.4	568
10	Cell differentiation by mechanical stress. FASEB Journal, 2002, 16, 1-13.	0.5	561
11	Engineering Complex Tissues. Tissue Engineering, 2006, 12, 3307-3339.	4.6	513
12	Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 84-91.	17.5	497
13	Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010, 2, 022001.	7.1	492
14	Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering. Biotechnology Progress, 1998, 14, 193-202.	2.6	490
15	Bone Tissue Engineering Using Human Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow. Annals of Biomedical Engineering, 2004, 32, 112-122.	2.5	483
16	Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell, 2018, 22, 310-324.	11.1	479
17	Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and Bioengineering, 1999, 64, 580-589.	3.3	473
18	Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 2009, 4, 155-173.	12.0	463

#	Article	IF	CITATIONS
19	Challenges in Cardiac Tissue Engineering. Tissue Engineering - Part B: Reviews, 2010, 16, 169-187.	4.8	431
20	Engineered Microenvironments for Controlled Stem Cell Differentiation. Tissue Engineering - Part A, 2009, 15, 205-219.	3.1	429
21	Chondrogenesis in a Cell-Polymer-Bioreactor System. Experimental Cell Research, 1998, 240, 58-65.	2.6	423
22	Silk implants for the healing of critical size bone defects. Bone, 2005, 37, 688-698.	2.9	416
23	A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell, 2019, 176, 913-927.e18.	28.9	398
24	Tissue engineering of cartilage in space. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13885-13890.	7.1	385
25	Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. Journal of Controlled Release, 2009, 134, 81-90.	9.9	385
26	Engineering anatomically shaped human bone grafts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3299-3304.	7.1	367
27	Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnology and Bioengineering, 2006, 93, 332-343.	3.3	360
28	Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Engineering - Part A, 2008, 14, 413-421.	3.1	337
29	Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials, 2007, 28, 1152-1162.	11.4	335
30	Silk fibroin as an organic polymer for controlled drug delivery. Journal of Controlled Release, 2006, 111, 219-227.	9.9	328
31	Engineering bone-like tissuein vitro using human bone marrow stem cells and silk scaffolds. Journal of Biomedical Materials Research Part B, 2004, 71A, 25-34.	3.1	319
32	Tissue Engineering of Ligaments. Annual Review of Biomedical Engineering, 2004, 6, 131-156.	12.3	313
33	Perfusion Improves Tissue Architecture of Engineered Cardiac Muscle. Tissue Engineering, 2002, 8, 175-188.	4.6	308
34	Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biomacromolecules, 2014, 15, 635-643.	5.4	306
35	Medium perfusion enables engineering of compact and contractile cardiac tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H507-H516.	3.2	296
36	Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 2006, 12, 2077-2091.	4.6	296

#	Article	IF	CITATIONS
37	Tissueâ€engineered composites for the repair of large osteochondral defects. Arthritis and Rheumatism, 2002, 46, 2524-2534.	6.7	295
38	Engineering cartilageâ€like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnology and Bioengineering, 2004, 88, 379-391.	3.3	285
39	Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials, 2005, 26, 4442-4452.	11.4	283
40	Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Current Stem Cell Research and Therapy, 2008, 3, 254-264.	1.3	280
41	Tissue Engineering and Developmental Biology: Going Biomimetic. Tissue Engineering, 2006, 12, 3265-3283.	4.6	273
42	High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnology and Bioengineering, 2003, 82, 403-414.	3.3	268
43	Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 2007, 28, 2706-2717.	11.4	262
44	Advanced Tools for Tissue Engineering: Scaffolds, Bioreactors, and Signaling. Tissue Engineering, 2006, 12, 3285-3305.	4.6	255
45	Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 2008, 3, 719-738.	12.0	249
46	Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nature Biomedical Engineering, 2018, 2, 293-303.	22.5	249
47	A guide to the organ-on-a-chip. Nature Reviews Methods Primers, 2022, 2, .	21.2	247
48	Silk fibroin microtubes for blood vessel engineering. Biomaterials, 2007, 28, 5271-5279.	11.4	246
49	Mammalian Chondrocytes Expanded in the Presence of Fibroblast Growth Factor 2 Maintain the Ability to Differentiate and Regenerate Three-Dimensional Cartilaginous Tissue. Experimental Cell Research, 1999, 253, 681-688.	2.6	242
50	Composite scaffold provides a cell delivery platform for cardiovascular repair. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7974-7979.	7.1	241
51	Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials, 2011, 32, 2812-2820.	11.4	238
52	Culture of organized cell communities. Advanced Drug Delivery Reviews, 1998, 33, 15-30.	13.7	236
53	Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Experimental Cell Research, 2009, 315, 3611-3619.	2.6	234
54	Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1278-H1289.	3.2	232

#	Article	IF	CITATIONS
55	The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell, 2020, 26, 482-502.	11.1	230
56	Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds In Vitro. Calcified Tissue International, 2004, 74, 458-468.	3.1	227
57	Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomaterialia, 2015, 11, 27-36.	8.3	220
58	Vascular Progenitor Cells Isolated From Human Embryonic Stem Cells Give Rise to Endothelial and Smooth Muscle–Like Cells and Form Vascular Networks In Vivo. Circulation Research, 2007, 101, 286-294.	4.5	219
59	Integration of engineered cartilage. Journal of Orthopaedic Research, 2001, 19, 1089-1097.	2.3	214
60	Silk based biomaterials to heal critical sized femur defects. Bone, 2006, 39, 922-931.	2.9	214
61	Effects of Initial Seeding Density and Fluid Perfusion Rate on Formation of Tissue-Engineered Bone. Tissue Engineering - Part A, 2008, 14, 1809-1820.	3.1	213
62	Adipose Tissue Engineering for Soft Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2010, 16, 413-426.	4.8	212
63	The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials, 2007, 28, 4068-4077.	11.4	211
64	Macrophages modulate the viability and growth of human mesenchymal stem cells. Journal of Cellular Biochemistry, 2013, 114, 220-229.	2.6	211
65	Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia, 2012, 8, 2483-2492.	8.3	210
66	Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12295-12300.	7.1	209
67	Micro-bioreactor array for controlling cellular microenvironments. Lab on A Chip, 2007, 7, 710.	6.0	208
68	Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB Journal, 2002, 16, 1691-1694.	0.5	207
69	Hypoxia and stem cellâ€based engineering of mesenchymal tissues. Biotechnology Progress, 2009, 25, 32-42.	2.6	203
70	Decellularization of Human and Porcine Lung Tissues for Pulmonary Tissue Engineering. Annals of Thoracic Surgery, 2013, 96, 1046-1056.	1.3	203
71	Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnology and Bioengineering, 1999, 63, 197-205.	3.3	202
72	Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2in vitro andin vivo. Journal of Biomedical Materials Research - Part A, 2006, 78A, 324-334.	4.0	201

#	Article	IF	CITATIONS
73	Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Engineering, 0, , 110306233438005.	4.6	200
74	Engineering bone tissue substitutes from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8680-8685.	7.1	196
75	Advanced Bioreactor with Controlled Application of Multi-Dimensional Strain For Tissue Engineering. Journal of Biomechanical Engineering, 2002, 124, 742-749.	1.3	195
76	Collagen in tissue-engineered cartilage: Types, structure, and crosslinks. , 1998, 71, 313-327.		191
77	Differential Effects of Growth Factors on Tissue-Engineered Cartilage. Tissue Engineering, 2002, 8, 73-84.	4.6	190
78	Tissue-engineered autologous grafts for facial bone reconstruction. Science Translational Medicine, 2016, 8, 343ra83.	12.4	187
79	Microgravity tissue engineering. In Vitro Cellular and Developmental Biology - Animal, 1997, 33, 381-385.	1.5	181
80	Cartilage-like Tissue Engineering Using Silk Scaffolds and Mesenchymal Stem Cells. Tissue Engineering, 2006, 12, 2729-2738.	4.6	181
81	Microfluidic patterning for fabrication of contractile cardiac organoids. Biomedical Microdevices, 2007, 9, 149-157.	2.8	179
82	Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine. Annual Review of Biomedical Engineering, 2011, 13, 245-267.	12.3	172
83	Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: Comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Biomaterials, 2006, 27, 4993-5002.	11.4	171
84	Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials, 2006, 27, 6138-6149.	11.4	171
85	Silk hydrogel for cartilage tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 84-90.	3.4	167
86	Preâ€ŧreatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. Journal of Biomedical Materials Research - Part A, 2008, 86A, 713-724.	4.0	166
87	Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6940-6945.	7.1	166
88	Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1256-1261.	7.1	163
89	A multi-organ chip with matured tissue niches linked by vascular flow. Nature Biomedical Engineering, 2022, 6, 351-371.	22.5	162
90	Hybrid Gel Composed of Native Heart Matrix and Collagen Induces Cardiac Differentiation of Human Embryonic Stem Cells without Supplemental Growth Factors. Journal of Cardiovascular Translational Research, 2011, 4, 605-615.	2.4	161

#	Article	IF	CITATIONS
91	Bone Grafts Engineered from Human Adipose-Derived Stem Cells in Perfusion Bioreactor Culture. Tissue Engineering - Part A, 2010, 16, 179-189.	3.1	157
92	Engineering bone tissue from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8705-8709.	7.1	153
93	Method for Quantitative Analysis of Glycosaminoglycan Distribution in Cultured Natural and Engineered Cartilage. Annals of Biomedical Engineering, 1999, 27, 656-662.	2.5	151
94	Effects of mixing intensity on tissue-engineered cartilage. Biotechnology and Bioengineering, 2001, 72, 402-407.	3.3	147
95	Tubular silk scaffolds for small diameter vascular grafts. Organogenesis, 2010, 6, 217-224.	1.2	147
96	Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochemical and Biophysical Research Communications, 2002, 294, 149-154.	2.1	146
97	Bioreactors for plant engineering: an outlook for further research. Biochemical Engineering Journal, 2000, 4, 89-99.	3.6	143
98	<i>In vitro</i> differentiation of chick embryo bone marrow stromal cells into cartilaginous and boneâ€like tissues. Journal of Orthopaedic Research, 1998, 16, 181-189.	2.3	142
99	Percutaneous Cell Delivery into the Heart Using Hydrogels Polymerizing in Situ. Cell Transplantation, 2009, 18, 297-304.	2.5	142
100	Should we use cells, biomaterials, or tissue engineering for cartilage regeneration?. Stem Cell Research and Therapy, 2016, 7, 56.	5.5	142
101	Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nature Communications, 2016, 7, 10312.	12.8	140
102	Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. Journal of Biomedical Materials Research Part B, 2001, 55, 229-235.	3.1	139
103	Potential pathophysiological mechanisms in osteonecrosis of the jaw. Annals of the New York Academy of Sciences, 2011, 1218, 62-79.	3.8	138
104	Distilling complexity to advance cardiac tissue engineering. Science Translational Medicine, 2016, 8, 342ps13.	12.4	138
105	Tissue Engineering: Biomedical Applications. Tissue Engineering, 1995, 1, 151-161.	4.6	135
106	Air-Lift Bioreactors for Algal Growth on Flue Gas:Â Mathematical Modeling and Pilot-Plant Studies. Industrial & Engineering Chemistry Research, 2005, 44, 6154-6163.	3.7	135
107	Biomimetic approach to tissue engineering. Seminars in Cell and Developmental Biology, 2009, 20, 665-673.	5.0	135
108	Engineering custom-designed osteochondral tissue grafts. Trends in Biotechnology, 2008, 26, 181-189.	9.3	133

#	Article	IF	CITATIONS
109	Biomimetic Platforms for Human Stem Cell Research. Cell Stem Cell, 2011, 8, 252-261.	11.1	133
110	Frontiers in Tissue Engineering. Clinical Orthopaedics and Related Research, 1999, 367, S46-S58.	1.5	131
111	Gel spinning of silk tubes for tissue engineering. Biomaterials, 2008, 29, 4650-4657.	11.4	131
112	Optimization of electrical stimulation parameters for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e115-e125.	2.7	131
113	Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Experimental Cell Research, 2016, 347, 1-13.	2.6	131
114	Effects of oxygen on engineered cardiac muscle. Biotechnology and Bioengineering, 2002, 78, 617-625.	3.3	130
115	Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnology and Bioengineering, 2011, 108, 1159-1170.	3.3	129
116	Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials, 2015, 60, 82-91.	11.4	128
117	Synovium-derived stem cell-based chondrogenesis. Differentiation, 2008, 76, 1044-1056.	1.9	127
118	Effect of Scaffold Design on Bone MorphologyIn Vitro. Tissue Engineering, 2006, 12, 3417-3429.	4.6	126
119	Can We Engineer a Human Cardiac Patch for Therapy?. Circulation Research, 2018, 123, 244-265.	4.5	121
120	A NOVEL COMPOSITE SCAFFOLD FOR CARDIAC TISSUE ENGINEERING. In Vitro Cellular and Developmental Biology - Animal, 2005, 41, 188.	1.5	120
121	Mechanical Properties and Remodeling of Hybrid Cardiac Constructs Made from Heart Cells, Fibrin, and Biodegradable, Elastomeric Knitted Fabric. Tissue Engineering, 2005, 11, 1122-1132.	4.6	120
122	A photolithographic method to create cellular micropatterns. Biomaterials, 2006, 27, 4755-4764.	11.4	118
123	Nanofabrication and Microfabrication of Functional Materials for Tissue Engineering. Tissue Engineering, 2007, 13, 1867-1877.	4.6	117
124	Osteogenic Differentiation of Human Bone Marrow Stromal Cells on Partially Demineralized Bone Scaffoldsin Vitro. Tissue Engineering, 2004, 10, 81-92.	4.6	114
125	Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, e12-e23.	2.7	114
126	Porous silk scaffolds can be used for tissue engineering annulus fibrosus. European Spine Journal, 2007, 16, 1848-1857.	2.2	112

#	Article	IF	CITATIONS
127	Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study. Acta Biomaterialia, 2011, 7, 144-151.	8.3	112
128	Micro-bioreactor arrays for controlling cellular environments: Design principles for human embryonic stem cell applications. Methods, 2009, 47, 81-89.	3.8	110
129	Controlled release of cytokines using silk-biomaterials for macrophage polarization. Biomaterials, 2015, 73, 272-283.	11.4	110
130	IGF-I and Mechanical Environment Interact to Modulate Engineered Cartilage Development. Biochemical and Biophysical Research Communications, 2001, 286, 909-915.	2.1	109
131	In Vitro Model of Vascularized Bone: Synergizing Vascular Development and Osteogenesis. PLoS ONE, 2011, 6, e28352.	2.5	107
132	Effects of electrical stimulation in C2C12 muscle constructs. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 279-287.	2.7	102
133	Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype. Nature Protocols, 2019, 14, 2781-2817.	12.0	101
134	Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthritis and Cartilage, 2010, 18, 714-723.	1.3	99
135	The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials, 2013, 34, 9830-9841.	11.4	99
136	Cultivation in Rotating Bioreactors Promotes Maintenance of Cardiac Myocyte Electrophysiology and Molecular Properties. Tissue Engineering, 2003, 9, 1243-1253.	4.6	96
137	Organs-on-a-chip models for biological research. Cell, 2021, 184, 4597-4611.	28.9	96
138	TISSUE ENGINEERING BIOREACTORS. , 2000, , 143-156.		95
139	Bone Morphogenetic Proteins-2, -12, and -13 Modulatein VitroDevelopment of Engineered Cartilage. Tissue Engineering, 2002, 8, 591-601.	4.6	94
140	Biodegradable Fibrous Scaffolds with Tunable Properties Formed from Photo-Cross-Linkable Poly(glycerol sebacate). ACS Applied Materials & Interfaces, 2009, 1, 1878-1886.	8.0	94
141	Micropatterned three-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 205-215.	2.7	91
142	Surface-patterned electrode bioreactor for electrical stimulation. Lab on A Chip, 2010, 10, 692.	6.0	91
143	Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials, 2012, 33, 8329-8342.	11.4	88
144	Gene Transfer of a Human Insulin-Like Growth Factor I cDNA Enhances Tissue Engineering of Cartilage. Human Gene Therapy, 2002, 13, 1621-1630.	2.7	86

#	Article	IF	CITATIONS
145	Time-Dependent Processes in Stem Cell-Based Tissue Engineering of Articular Cartilage. Stem Cell Reviews and Reports, 2012, 8, 863-881.	5.6	86
146	Immune modulation as a therapeutic strategy in bone regeneration. Journal of Experimental Orthopaedics, 2015, 2, 1.	1.8	82
147	Electrical stimulation enhances cell migration and integrative repair in the meniscus. Scientific Reports, 2014, 4, 3674.	3.3	82
148	Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab on A Chip, 2010, 10, 3277.	6.0	81
149	Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model. Biomaterials, 2017, 132, 59-71.	11.4	79
150	Concise Review: Personalized Human Bone Grafts for Reconstructing Head and Face. Stem Cells Translational Medicine, 2012, 1, 64-69.	3.3	77
151	Assembly of complex cell microenvironments using geometrically docked hydrogel shapes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4551-4556.	7.1	76
152	Tissue-engineered models of human tumors for cancer research. Expert Opinion on Drug Discovery, 2015, 10, 257-268.	5.0	76
153	The influence of hypoxia and IFN- \hat{I}^3 on the proteome and metabolome of therapeutic mesenchymal stem cells. Biomaterials, 2018, 167, 226-234.	11.4	74
154	From Arteries to Capillaries: Approaches to Engineering Human Vasculature. Advanced Functional Materials, 2020, 30, 1910811.	14.9	74
155	Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro. Osteoarthritis and Cartilage, 2005, 13, 129-138.	1.3	72
156	Engineering of Functional Cartilage Tissue Using Stem Cells from Synovial Lining: A Preliminary Study. Clinical Orthopaedics and Related Research, 2008, 466, 1880-1889.	1.5	72
157	Geometric control of human stem cell morphology and differentiation. Integrative Biology (United) Tj ETQq1 1 0.	784314 rg 1.3	gBT_/Overlact
158	Functional vascularized lung grafts for lung bioengineering. Science Advances, 2017, 3, e1700521.	10.3	72
159	Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro. Journal of Orthopaedic Research, 2005, 23, 164-174.	2.3	71
160	Size-based microfluidic enrichment of neonatal rat cardiac cell populations. Biomedical Microdevices, 2006, 8, 231-237.	2.8	71
161	The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials, 2013, 34, 393-401.	11.4	71
162	Biomimetic Approaches for Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2017, 23, 480-493.	4.8	69

#	Article	IF	CITATIONS
163	Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab on A Chip, 2020, 20, 4357-4372.	6.0	69
164	Recapitulating the Size and Cargo of Tumor Exosomes in a Tissue-Engineered Model. Theranostics, 2016, 6, 1119-1130.	10.0	68
165	HeLiVa platform: integrated heart-liver-vascular systems for drug testing in human health and disease. Stem Cell Research and Therapy, 2013, 4, S8.	5.5	67
166	Bioengineered human tumor within a bone niche. Biomaterials, 2014, 35, 5785-5794.	11.4	67
167	Modeling tumor microenvironments using custom-designed biomaterial scaffolds. Current Opinion in Chemical Engineering, 2016, 11, 94-105.	7.8	66
168	Translation from Research to Applications. Tissue Engineering, 2006, 12, 3341-3364.	4.6	65
169	Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnology Progress, 2010, 26, 565-572.	2.6	65
170	Macrophages Modulate Engineered Human Tissues for Enhanced Vascularization and Healing. Annals of Biomedical Engineering, 2015, 43, 616-627.	2.5	64
171	Tissue Engineering and Regenerative Medicine 2015: A Year in Review. Tissue Engineering - Part B: Reviews, 2016, 22, 101-113.	4.8	64
172	Enhancing annulus fibrosus tissue formation in porous silk scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 92A, 43-51.	4.0	63
173	Rhizopus arrhizus lipase-catalyzed interesterification of the midfraction of palm oil to a cocoa butter equivalent fat. Enzyme and Microbial Technology, 1993, 15, 438-443.	3.2	62
174	Scaffold stiffness affects the contractile function of threeâ€dimensional engineered cardiac constructs. Biotechnology Progress, 2010, 26, 1382-1390.	2.6	62
175	Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-Î ² and is ameliorated by the alternative supplementation of latent TGF-Î ² . Biomaterials, 2016, 77, 173-185.	11.4	62
176	Alternative direct stem cell derivatives defined by stem cell location and graded Wnt signalling. Nature Cell Biology, 2017, 19, 433-444.	10.3	58
177	Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair. Biomaterials, 2017, 139, 202-212.	11.4	58
178	Biophysical regulation during cardiac development and application to tissue engineering. International Journal of Developmental Biology, 2006, 50, 233-243.	0.6	57
179	Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. Journal of the Royal Society Interface, 2008, 5, 929-939.	3.4	57
180	Geometry and force control of cell function. Journal of Cellular Biochemistry, 2009, 108, 1047-1058.	2.6	57

#	Article	IF	CITATIONS
181	In Vitro Mesenchymal Trilineage Differentiation and Extracellular Matrix Production by Adipose and Bone Marrow Derived Adult Equine Multipotent Stromal Cells on a Collagen Scaffold. Stem Cell Reviews and Reports, 2013, 9, 858-872.	5.6	57
182	Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs. Nature Medicine, 2020, 26, 1102-1113.	30.7	56
183	Bioengineering methods for myocardial regeneration. Advanced Drug Delivery Reviews, 2016, 96, 195-202.	13.7	55
184	Non-Invasive Time-Lapsed Monitoring and Quantification of Engineered Bone-Like Tissue. Annals of Biomedical Engineering, 2007, 35, 1657-1667.	2.5	54
185	Bioreactor engineering of stem cell environments. Biotechnology Advances, 2013, 31, 1020-1031.	11.7	53
186	The Current Status of iPS Cells in Cardiac Research and Their Potential for Tissue Engineering and Regenerative Medicine. Stem Cell Reviews and Reports, 2014, 10, 177-190.	5.6	53
187	Optical Mapping of Impulse Propagation in Engineered Cardiac Tissue. Tissue Engineering - Part A, 2009, 15, 851-860.	3.1	52
188	Microgravity Studies of Cells and Tissues. Annals of the New York Academy of Sciences, 2002, 974, 504-517.	3.8	51
189	Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells. Lab on A Chip, 2013, 13, 355-364.	6.0	51
190	Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Biomaterials, 2018, 173, 47-57.	11.4	51
191	Engineering cartilage and bone using human mesenchymal stem cells. Journal of Orthopaedic Science, 2007, 12, 398-404.	1.1	50
192	Age-Related Carbonylation of Fibrocartilage Structural Proteins Drives Tissue Degenerative Modification. Chemistry and Biology, 2013, 20, 922-934.	6.0	50
193	High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties. Journal of Biomechanics, 2016, 49, 1909-1917.	2.1	49
194	In Vitro Models of Ischemia-Reperfusion Injury. Regenerative Engineering and Translational Medicine, 2018, 4, 142-153.	2.9	48
195	Adipose tissue as a stem cell source for musculoskeletal regeneration. Frontiers in Bioscience - Scholar, 2011, S3, 69-81.	2.1	47
196	In vitro platforms for tissue engineering: implications for basic research and clinical translation. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e164-e167.	2.7	47
197	Spaceflight bioreactor studies of cells and tissues. Advances in Space Biology and Medicine, 2002, 8, 177-195.	0.5	45
198	Alignment and elongation of human adipose-derived stem cells in response to direct-current		44

electrical stimulation. , 2009, 2009, 6517-21.

#	Article	IF	CITATIONS
199	Quantification of human neuromuscular function through optogenetics. Theranostics, 2019, 9, 1232-1246.	10.0	44
200	It takes a village to grow a tissue. Nature Biotechnology, 2005, 23, 1237-1239.	17.5	43
201	The Fundamentals of Tissue Engineering: Scaffolds and Bioreactors. Novartis Foundation Symposium, 2008, , 34-51.	1.1	43
202	Channelled scaffolds for engineering myocardium with mechanical stimulation. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 748-756.	2.7	43
203	Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2556-2561.	7.1	43
204	Insulin, Ascorbate, and Glucose Have a Much Greater Influence Than Transferrin and Selenous Acid on the <i>In Vitro</i> Growth of Engineered Cartilage in Chondrogenic Media. Tissue Engineering - Part A, 2013, 19, 1941-1948.	3.1	42
205	Regeneration of severely damaged lungs using an interventional cross-circulation platform. Nature Communications, 2019, 10, 1985.	12.8	42
206	Human Tissue-Engineered Model of Myocardial Ischemia–Reperfusion Injury. Tissue Engineering - Part A, 2019, 25, 711-724.	3.1	42
207	Bioactive Scaffolds for Engineering Vascularized Cardiac Tissues. Macromolecular Bioscience, 2010, 10, 1286-1301.	4.1	41
208	Vascular Endothelial Growth Factor Secretion by Nonmyocytes Modulates Connexin-43 Levels in Cardiac Organoids. Tissue Engineering - Part A, 2012, 18, 1771-1783.	3.1	41
209	Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 2012, 84, 1791-1805.	45.6	39
210	Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development. Experimental Cell Research, 2014, 321, 297-306.	2.6	39
211	Cross-circulation for extracorporeal support and recovery of the lung. Nature Biomedical Engineering, 2017, 1, .	22.5	39
212	A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy. Lab on A Chip, 2017, 17, 3264-3271.	6.0	39
213	Dual IFN-Î ³ /hypoxia priming enhances immunosuppression of mesenchymal stromal cells through regulatory proteins and metabolic mechanisms. Journal of Immunology and Regenerative Medicine, 2018, 1, 45-56.	0.4	39
214	Progress in multicellular human cardiac organoids for clinical applications. Cell Stem Cell, 2022, 29, 503-514.	11.1	39
215	Practical Aspects of Cardiac Tissue Engineering With Electrical Stimulation. Methods in Molecular Medicine, 2007, 140, 291-307.	0.8	38
216	Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opinion on Biological Therapy, 2015, 15, 1583-1599.	3.1	38

#	Article	IF	CITATIONS
217	Multiday maintenance of extracorporeal lungs using cross-circulation with conscious swine. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1640-1653.e18.	0.8	38
218	The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs. Biomaterials, 2008, 29, 4292-4299.	11.4	37
219	Tissue engineered autologous cartilage-bone grafts for temporomandibular joint regeneration. Science Translational Medicine, 2020, 12, .	12.4	37
220	Effects of Pamidronate on Human Alveolar Osteoblasts In Vitro. Journal of Oral and Maxillofacial Surgery, 2012, 70, 1081-1092.	1.2	36
221	Seven Actionable Strategies for Advancing Women in Science, Engineering, and Medicine. Cell Stem Cell, 2015, 16, 221-224.	11.1	36
222	Clinical translation of controlled protein delivery systems for tissue engineering. Drug Delivery and Translational Research, 2015, 5, 101-115.	5.8	36
223	Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell, 2021, 28, 993-1015.	11.1	36
224	Development and remodeling of engineered cartilage-explant composites in vitro and in vivo. Osteoarthritis and Cartilage, 2005, 13, 896-905.	1.3	35
225	Cardiac tissue engineering: effects of bioreactor flow environment on tissue constructs. Journal of Chemical Technology and Biotechnology, 2006, 81, 485-490.	3.2	35
226	Patterning osteogenesis by inducible gene expression in microfluidic culture systems. Integrative Biology (United Kingdom), 2011, 3, 39-47.	1.3	34
227	Optimizing Dynamic Interactions between a Cardiac Patch and Inflammatory Host Cells. Cells Tissues Organs, 2012, 195, 171-182.	2.3	34
228	Controlled delivery and minimally invasive imaging of stem cells in the lung. Scientific Reports, 2017, 7, 13082.	3.3	34
229	Adipogenic Differentiation of Human Adipose-Derived Stem Cells on 3D Silk Scaffolds. Methods in Molecular Biology, 2011, 702, 319-330.	0.9	33
230	Matrix Production in Large Engineered Cartilage Constructs Is Enhanced by Nutrient Channels and Excess Media Supply. Tissue Engineering - Part C: Methods, 2015, 21, 747-757.	2.1	32
231	Targeted delivery of liquid microvolumes into the lung. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11530-11535.	7.1	32
232	Cardiac tissue engineering. Journal of the Serbian Chemical Society, 2005, 70, 541-556.	0.8	32
233	Cell Seeding of Polymer Scaffolds. , 2004, 238, 131-146.		31
234	A Biocompatible Endothelial Cell Delivery System for in Vitro Tissue Engineering. Cell Transplantation, 2009, 18, 731-743.	2.5	31

#	Article	IF	CITATIONS
235	Bioengineering heart tissue for in vitro testing. Current Opinion in Biotechnology, 2013, 24, 926-932.	6.6	31
236	Natural Cardiac Extracellular Matrix Hydrogels for Cultivation of Human Stem Cell-Derived Cardiomyocytes. Methods in Molecular Biology, 2014, 1181, 69-81.	0.9	31
237	Biofabrication enables efficient interrogation and optimization of sequential culture of endothelial cells, fibroblasts and cardiomyocytes for formation of vascular cords in cardiac tissue engineering. Biofabrication, 2012, 4, 035002.	7.1	30
238	Characterization of Electrical Stimulation Electrodes for Cardiac Tissue Engineering. , 2006, 2006, 845-8.		28
239	Effects of Hyperinsulinemia on Lipolytic Function of Three-Dimensional Adipocyte/Endothelial Co-Cultures. Tissue Engineering - Part C: Methods, 2010, 16, 1157-1165.	2.1	28
240	Micropatterning of cells reveals chiral morphogenesis. Stem Cell Research and Therapy, 2013, 4, 24.	5.5	28
241	Paracrine Effects of Mesenchymal Stromal Cells Cultured in Three-Dimensional Settings on Tissue Repair. ACS Biomaterials Science and Engineering, 2018, 4, 1162-1175.	5.2	28
242	Cell replacement in human lung bioengineering. Journal of Heart and Lung Transplantation, 2019, 38, 215-224.	0.6	28
243	Engineered microenvironments for human stem cells. Birth Defects Research Part C: Embryo Today Reviews, 2008, 84, 335-347.	3.6	27
244	Nutrient channels and stirring enhanced the composition and stiffness of large cartilage constructs. Journal of Biomechanics, 2014, 47, 3847-3854.	2.1	27
245	Passage-dependent relationship between mesenchymal stem cell mobilization and chondrogenic potential. Osteoarthritis and Cartilage, 2015, 23, 319-327.	1.3	27
246	Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway. Experimental Cell Research, 2014, 320, 79-91.	2.6	26
247	Shortcomings of Animal Models and the Rise of Engineered Human Cardiac Tissue. ACS Biomaterials Science and Engineering, 2017, 3, 1884-1897.	5.2	26
248	Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction. Stem Cells Translational Medicine, 2017, 6, 970-981.	3.3	26
249	A Multimaterial Microphysiological Platform Enabled by Rapid Casting of Elastic Microwires. Advanced Healthcare Materials, 2019, 8, e1801187.	7.6	26
250	Lipolytic Function of Adipocyte/Endothelial Cocultures. Tissue Engineering - Part A, 2011, 17, 1437-1444.	3.1	25
251	Extracellular matrix components and culture regimen selectively regulate cartilage formation by self-assembling human mesenchymal stem cells in vitro and in vivo. Stem Cell Research and Therapy, 2016, 7, 183.	5.5	25
252	Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nature Biomedical Engineering, 2022, 6, 327-338.	22.5	25

#	Article	IF	CITATIONS
253	Synthetic Oxygen Carriers in Cardiac Tissue Engineering. Artificial Cells, Blood Substitutes, and Biotechnology, 2007, 35, 135-148.	0.9	24
254	Controllable Expansion of Primary Cardiomyocytes by Reversible Immortalization. Human Gene Therapy, 2009, 20, 1687-1696.	2.7	24
255	Hydrodynamics and mass transfer in a four-phase external loop air lift bioreactor. Biotechnology Progress, 1995, 11, 420-428.	2.6	23
256	Human adipose-derived cells can serve as a single-cell source for the <i>in vitro</i> cultivation of vascularized bone grafts. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 629-639.	2.7	23
257	Hierarchically Ordered Nanopatterns for Spatial Control of Biomolecules. ACS Nano, 2014, 8, 11846-11853.	14.6	23
258	Bioengineering approaches to organ preservation <i>ex vivo</i> . Experimental Biology and Medicine, 2019, 244, 630-645.	2.4	23
259	Cell type–specific microRNA therapies for myocardial infarction. Science Translational Medicine, 2021, 13, .	12.4	23
260	A framework for developing sex-specific engineered heart models. Nature Reviews Materials, 2022, 7, 295-313.	48.7	22
261	Bioreactor Cultivation of Functional Bone Grafts. Methods in Molecular Biology, 2011, 698, 231-241.	0.9	21
262	Microscale technologies for regulating human stem cell differentiation. Experimental Biology and Medicine, 2014, 239, 1255-1263.	2.4	21
263	Tissue-Engineered Model of Human Osteolytic Bone Tumor. Tissue Engineering - Part C: Methods, 2017, 23, 98-107.	2.1	21
264	Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos. Stem Cells International, 2011, 2011, 1-9.	2.5	20
265	Micropatterning chiral morphogenesis. Communicative and Integrative Biology, 2011, 4, 745-748.	1.4	20
266	Supplementation of Exogenous Adenosine 5′-Triphosphate Enhances Mechanical Properties of 3D Cell–Agarose Constructs for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2013, 19, 2188-2200.	3.1	20
267	Synergistic Effects of Hypoxia and Morphogenetic Factors on Early Chondrogenic Commitment of Human Embryonic Stem Cells in Embryoid Body Culture. Stem Cell Reviews and Reports, 2015, 11, 228-241.	5.6	20
268	Nutrient Channels Aid the Growth of Articular Surface-Sized Engineered Cartilage Constructs. Tissue Engineering - Part A, 2016, 22, 1063-1074.	3.1	20
269	Bioengineered optogenetic model of human neuromuscular junction. Biomaterials, 2021, 276, 121033.	11.4	20
270	Selective differentiation of mammalian bone marrow stromal cells cultured on threeâ€dimensional polymer foams. Journal of Biomedical Materials Research Part B, 2001, 55, 229-235.	3.1	20

#	Article	IF	CITATIONS
271	Flow regimes and liquid mixing in a draft tube gas-liquid-solid fluidized bed. Chemical Engineering Science, 1992, 47, 3451-3458.	3.8	19
272	Basic Principles of Cell Culture. , 2006, , 1-22.		19
273	Noninvasive Imaging of Myocyte Apoptosis Following Application of a Stem Cell–Engineered Delivery Platform to Acutely Infarcted Myocardium. Journal of Nuclear Medicine, 2013, 54, 977-983.	5.0	19
274	Modular Assembly Approach to Engineer Geometrically Precise Cardiovascular Tissue. Advanced Healthcare Materials, 2016, 5, 900-906.	7.6	19
275	Engineered Vascularized Flaps, Composed of Polymeric Soft Tissue and Live Bone, Repair Complex Tibial Defects. Advanced Functional Materials, 2021, 31, 2008687.	14.9	19
276	Tissue engineered models of healthy and malignant human bone marrow. Advanced Drug Delivery Reviews, 2019, 140, 78-92.	13.7	18
277	Extracellular Vesicles in Cardiac Regeneration: Potential Applications for Tissues-on-a-Chip. Trends in Biotechnology, 2021, 39, 755-773.	9.3	18
278	Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts. Methods in Molecular Biology, 2013, 1202, 57-78.	0.9	17
279	Left-Ventricular Assist Device Impact on Aortic Valve Mechanics, Proteomics and Ultrastructure. Annals of Thoracic Surgery, 2018, 105, 572-580.	1.3	17
280	Mechanics of particle motion in three-phase flow. Chemical Engineering Science, 1995, 50, 3285-3295.	3.8	16
281	Transient hypoxia improves matrix properties in tissue engineered cartilage. Journal of Orthopaedic Research, 2013, 31, 544-553.	2.3	16
282	Pulsed electromagnetic fields promote repair of focal articular cartilage defects with engineered osteochondral constructs. Biotechnology and Bioengineering, 2020, 117, 1584-1596.	3.3	16
283	Patterning Stem Cell Differentiation. Cell Stem Cell, 2008, 3, 362-363.	11.1	15
284	Patterning pluripotency in embryonic stem cells. Stem Cells, 2013, 31, 1806-1815.	3.2	15
285	Engineering physiologically stiff and stratified human cartilage by fusing condensed mesenchymal stem cells. Methods, 2015, 84, 109-114.	3.8	15
286	Endothelial Cells Enhance the Migration of Bovine Meniscus Cells. Arthritis and Rheumatology, 2015, 67, 182-192.	5.6	15
287	Mesenchymal Stem Cells for Tissue Engineering. , 2006, , 23-59.		14
288	Principles of Tissue Culture and Bioreactor Design. , 2007, , 155-183.		14

#	Article	IF	CITATIONS
289	Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors. Methods in Molecular Biology, 2013, 1202, 173-184.	0.9	14
290	Portable bioreactor for perfusion and electrical stimulation of engineered cardiac tissue. , 2013, 2013, 6219-23.		14
291	Bioengineered Models of Solid Human Tumors for Cancer Research. Methods in Molecular Biology, 2016, 1502, 203-211.	0.9	14
292	Bioreactor model of neuromuscular junction with electrical stimulation for pharmacological potency testing. Integrative Biology (United Kingdom), 2017, 9, 956-967.	1.3	14
293	milliPillar: A Platform for the Generation and Real-Time Assessment of Human Engineered Cardiac Tissues. ACS Biomaterials Science and Engineering, 2021, 7, 5215-5229.	5.2	14
294	Local and Overall Mixing Characteristics of the Gas-Liquid-Solid Air Lift Reactor. Industrial & Engineering Chemistry Research, 1994, 33, 698-702.	3.7	13
295	Engineering Tissue with BioMEMS. IEEE Pulse, 2011, 2, 28-34.	0.3	13
296	Sequential Application of Steady and Pulsatile Medium Perfusion Enhanced the Formation of Engineered Bone. Tissue Engineering - Part A, 2013, 19, 1244-1254.	3.1	13
297	Testing the potency of antiâ€TNFâ€Î± and antiâ€ILâ€I β drugs using spheroid cultures of human osteoarthritic chondrocytes and donorâ€matched chondrogenically differentiated mesenchymal stem cells. Biotechnology Progress, 2018, 34, 1045-1058.	2.6	13
298	Engineered models of tumor metastasis with immune cell contributions. IScience, 2021, 24, 102179.	4.1	13
299	Machine Learning Techniques to Classify Healthy and Diseased Cardiomyocytes by Contractility Profile. ACS Biomaterials Science and Engineering, 2021, 7, 3043-3052.	5.2	13
300	Culture of Neuroendocrine and Neuronal Cells for Tissue Engineering. , 2006, , 375-415.		12
301	Mesenchymal Stem Cells for Osteochondral Tissue Engineering. Methods in Molecular Biology, 2016, 1416, 35-54.	0.9	12
302	Live imaging of stem cells in the germarium of the Drosophila ovary using a reusable gas-permeable imaging chamber. Nature Protocols, 2018, 13, 2601-2614.	12.0	12
303	In vitro models of neuromuscular junctions and their potential for novel drug discovery and development. Expert Opinion on Drug Discovery, 2020, 15, 307-317.	5.0	12
304	Bioreactor based on suspended particles of immobilized enzyme. Annals of Biomedical Engineering, 1993, 21, 57-65.	2.5	11
305	Mechanical Forces And Growth Factors Utilized In Tissue Engineering. , 1998, , 61-82.		11
306	Constrained Cage Culture Improves Engineered Cartilage Functional Properties by Enhancing Collagen Network Stability. Tissue Engineering - Part A, 2017, 23, 847-858.	3.1	11

#	Article	IF	CITATIONS
307	Tissue engineering of the heart: An evolving paradigm. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 593-595.	0.8	11
308	Extractive bioconversion in a four-phase external-loop airlift bioreactor. AICHE Journal, 2000, 46, 1368-1375.	3.6	10
309	Electrical stimulation via a biocompatible conductive polymer directs retinal progenitor cell differentiation. , 2013, 2013, 1627-31.		10
310	Engineering complexity in human tissue models of cancer. Advanced Drug Delivery Reviews, 2022, 184, 114181.	13.7	10
311	Rhizopus arrhizus lipase-catalyzed interesterification of palm oil midfraction in a gas-lift reactor. Enzyme and Microbial Technology, 1994, 16, 159-162.	3.2	9
312	Sustained Delivery of SB-431542, a Type I Transforming Growth Factor Beta-1 Receptor Inhibitor, to Prevent Arthrofibrosis. Tissue Engineering - Part A, 2021, 27, 1411-1421.	3.1	9
313	Emerging technologies provide insights on cancer extracellular matrix biology and therapeutics. IScience, 2021, 24, 102475.	4.1	9
314	A fluid dynamic model of the draft tube gas-liquid-solid fluidized bed. Chemical Engineering Science, 1995, 50, 3763-3775.	3.8	8
315	Bioengineered tumors. Bioengineered, 2015, 6, 73-76.	3.2	8
316	"The state of the heartâ€: Recent advances in engineering human cardiac tissue from pluripotent stem cells. Experimental Biology and Medicine, 2015, 240, 1008-1018.	2.4	8
317	Optimizing nutrient channel spacing and revisiting TGF-beta in large engineered cartilage constructs. Journal of Biomechanics, 2016, 49, 2089-2094.	2.1	8
318	Tissue-Engineering for the Study of Cardiac Biomechanics. Journal of Biomechanical Engineering, 2016, 138, 021010.	1.3	8
319	Perfusion Enhances Hypertrophic Chondrocyte Matrix Deposition, But Not the Bone Formation. Tissue Engineering - Part A, 2018, 24, 1022-1033.	3.1	8
320	Tissue-Engineered Bone Tumor as a Reproducible Human <i>in Vitro</i> Model for Studies of Anticancer Drugs. Toxicological Sciences, 2020, 173, 65-76.	3.1	8
321	Embryonic stem cells as a cell source for tissue engineering. , 2020, , 467-490.		8
322	Horizontal transfer of the stemness-related markers EZH2 and GLI1 by neuroblastoma-derived extracellular vesicles in stromal cells. Translational Research, 2021, 237, 82-97.	5.0	8
323	Transcriptional patterns of reverse remodeling with left ventricular assist devices: a consistent signature. Expert Review of Medical Devices, 2016, 13, 1029-1034.	2.8	7
324	Evaluation of silicone tubing toxicity using tobacco BY2 culture. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 555-560.	2.1	6

		IF	CITATIONS
325 Cell S	Sources for Cartilage Tissue Engineering. , 2006, , 83-111.		6
326 Tissu	e Engineering of Bone. , 2006, , 323-373.		6
327 Cell r	nutrition. , 2008, , 327-362.		6
	d retraction of microvolume aqueous plugs traveling in a wettable capillary. Applied Physics ers, 2015, 107, 144101.	3.3	6
	pic implantation of juvenile osteochondral tissues recapitulates endochondral ossification. al of Tissue Engineering and Regenerative Medicine, 2018, 12, 468-478.	2.7	6
	ngineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Frontiers in ngineering and Biotechnology, 2020, 8, 269.	4.1	6
	ing-guided bioreactor for de-epithelialization and long-term cultivation of <i>ex vivo</i> rat nea. Lab on A Chip, 2022, 22, 1018-1031.	6.0	6
332 Tissu	e Engineering Human Skeletal Muscle for Clinical Applications. , 2006, , 239-257.		5
333 Card	iac Tissue Engineering. , 2014, , 771-792.		5
334 Embr	ryonic Stem Cells as a Cell Source for Tissue Engineering. , 2014, , 609-638.		5
	/>Emerging Impact of Extracellular Vesicles on Tissue Engineering and Regeneration. Tissue neering - Part A, 2017, 23, 1210-1211.	3.1	5
	an Serum Enhances Biomimicry of Engineered Tissue Models of Bone and Cancer. Frontiers in ngineering and Biotechnology, 2021, 9, 658472.	4.1	5
337 Non- 370-3	destructive vacuum-assisted measurement of lung elastic modulus. Acta Biomaterialia, 2021, 131, 380.	8.3	5
	and Protein Delivery by Cell‧ecreted and Bioengineered Extracellular Vesicles. Advanced thcare Materials, 2022, 11, e2101557.	7.6	5
	ging Trajectories for Next Generation Tissue Engineers. ACS Biomaterials Science and neering, 2022, 8, 4598-4604.	5.2	5
	Fundamentals of tissue engineering: scaffolds and bioreactors. Novartis Foundation Symposium, 3, 249, 34-46; discussion 46-51, 170-4, 239-41.	1.1	5
	ogeneous Distribution of Exogenous Cells onto De-epithelialized Rat Trachea via Instillation of Loaded Hydrogel. ACS Biomaterials Science and Engineering, 2022, 8, 82-88.	5.2	5

Cellular Photoencapsulation in Hydrogels. , 2006, , 213-238.

#	Article	IF	CITATIONS
343	Tissue Engineering of Articular Cartilage. , 2006, , 157-189.		4
344	Tissue Engineering Strategies for Skeletal Repair. HSS Journal, 2012, 8, 57-58.	1.7	4
345	Physical influences on stem cells. Stem Cell Research and Therapy, 2013, 4, 153.	5.5	4
346	Biomimetic electrical stimulation platform for neural differentiation of retinal progenitor cells. , 2013, 2013, 5666-9.		4
347	Purinergic responses of chondrogenic stem cells to dynamic loading. Journal of the Serbian Chemical Society, 2013, 78, 1865-1874.	0.8	4
348	Dynamic Hydrogels for Investigating Vascularization. Cell Stem Cell, 2020, 27, 697-698.	11.1	4
349	Gut bioengineering strategies for regenerative medicine. American Journal of Physiology - Renal Physiology, 2021, 320, G1-G11.	3.4	4
350	Principles of Bioreactor Design for Encapsulated Cells. , 1999, , 395-416.		4
351	Bioreactors in Tissue Engineering. , 2012, , 217-227.		4
352	Culture Environments. , 2002, , 97-111.		4
353	Changes in extracellular matrix in failing human non-ischemic and ischemic hearts with mechanical unloading. Journal of Molecular and Cellular Cardiology, 2022, 166, 137-151.	1.9	4
354	Pathological remodeling of distal lung matrix in end-stage cystic fibrosis patients. Journal of Cystic Fibrosis, 2022, 21, 1027-1035.	0.7	4
355	Tissue Engineering of Cartilage and Myocardium. , 2005, , 99-133.		3
356	Tissue Engineering: Basic Considerations. , 2006, , 129-155.		3
357	Ligament Tissue Engineering. , 2006, , 191-211.		3
358	Bioreactors for tissue engineering. , 2008, , 483-506.		3
359	Principles of engineering tissue regeneration (Sun Valley 2012). IBMS BoneKEy, 2013, 10, .	0.0	3
360	A protein for healing infarcted hearts. Nature, 2015, 525, 461-462.	27.8	3

#	Article	IF	CITATIONS
361	Lessons from Biology: Engineering Design Considerations for Modeling Human Hematopoiesis. Current Stem Cell Reports, 2021, 7, 174-184.	1.6	3
362	Cross-Circulation for Extracorporeal Liver Support in a Swine Model. ASAIO Journal, 2022, 68, 561-570.	1.6	3
363	Engineering Functional Bone Grafts. , 2011, , 221-235.		3
364	Bioengineering Human Cartilage–Bone Tissues for Modeling of Osteoarthritis. Stem Cells and Development, 2022, 31, 399-405.	2.1	3
365	Engineering Functional Cartilage and Cardiac Tissue: In vitro Culture Parameters. , 2003, , 360-376.		2
366	Functional Tissue Engineering of Cartilage and Myocardium. , 2005, , 501-530.		2
367	Human Embryonic Stem Cell Culture for Tissue Engineering. , 2006, , 61-82.		2
368	Bioreactors for Tissue Engineering. , 2013, , 1178-1194.		2
369	Principles of Bioreactor Design for Tissue Engineering. , 2014, , 261-278.		2
370	Advanced methods for tissue engineering and regenerative medicine. Methods, 2015, 84, 1-2.	3.8	2
371	Bupivacaine Mandibular Nerve Block Affects Intraoperative Blood Pressure and Heart Rate in a Yucatan Miniature Swine Mandibular Condylectomy Model: A Pilot Study. Journal of Investigative Surgery, 2015, 28, 32-39.	1.3	2
372	Tissue Engineered Bone Differentiated From Human Adipose Derived Stem Cells Inhibit Posterolateral Fusion in an Athymic Rat Model. Spine, 2018, 43, 533-541.	2.0	2
373	Bioreactors in Regenerative Medicine. , 2019, , 787-803.		2
374	Cardiac tissue engineering. , 2020, , 593-616.		2
375	Kinetics of immobilized heparinase in human blood. Annals of Biomedical Engineering, 1993, 21, 67-76.	2.5	1
376	Microgravity studies on cells and tissues: From Mir to the ISS. , 1999, , .		1
377	Tissue Engineering of the Liver. , 2006, , 417-471.		1
378	Feasibility of Long-Distance Transfer for High Resolution Optical Mapping of Cardiac Tissue Constructs. Biophysical Journal, 2012, 102, 676a.	0.5	1

#	Article	IF	CITATIONS
379	Cardiac Muscle Tissue Engineering. , 2013, , 1262-1276.		1
380	Biomimetic Platforms for Tissue Engineering. Israel Journal of Chemistry, 2013, 53, 767-776.	2.3	1
381	Delivering life's blood: emerging technologies, current opportunities and challenges. Current Opinion in Chemical Engineering, 2014, 3, v-vi.	7.8	1
382	Rapid Wire Casting: A Multimaterial Microphysiological Platform Enabled by Rapid Casting of Elastic Microwires (Adv. Healthcare Mater. 5/2019). Advanced Healthcare Materials, 2019, 8, 1970019.	7.6	1
383	Heart regeneration in mouse and human: a bioengineering perspective. Current Opinion in Physiology, 2020, 14, 56-63.	1.8	1
384	Three-dimensional Culture of Human Embryonic Stem Cells. Human Cell Culture, 2007, , 149-172.	0.1	1
385	Microbioreactors for Stem Cell Research. Biological and Medical Physics Series, 2011, , 203-225.	0.4	1
386	Tissue Engineering Strategies for Cardiac Regeneration. , 2011, , 443-475.		1
387	Chitosan-Collagen Based Channeled Scaffold for Cardiac Tissue Engineering. , 2009, , .		1
388	Cartilage-like Tissue Engineering Using Silk Scaffolds and Mesenchymal Stem Cells. Tissue Engineering, 2006, .	4.6	1
389	Nanofabrication and Microfabrication of Functional Materials for Tissue Engineering. Tissue Engineering, 2007, .	4.6	1
390	Lipid-Mediated Gene Transfer for Cartilage Tissue Engineering. , 2006, , 113-127.		0
391	Engineered Heart Tissue. , 2006, , 259-291.		0
392	Tissue-Engineered Blood Vessels. , 2006, , 293-322.		0
393	Suppliers List. , 2006, , 473-481.		0
394	Embryonic Stem Cells as a Cell Source for Tissue Engineering. , 2007, , 445-458.		0
395	Macromol. Biosci. 11/2010. Macromolecular Bioscience, 2010, 10, n/a-n/a.	4.1	0
396	Microgravity and Microgravity Analogue Studies of Cartilage and Cardiac Tissue Engineering. , 2016, , 175-195.		0

#	Article	IF	CITATIONS
397	Protection of Organ Vasculature By Endothelial Overexpression of HLA-G. Biology of Blood and Marrow Transplantation, 2016, 22, S362.	2.0	0
398	Extracellular Vesicles and their Versatile Roles in Tissue Engineering. Tissue Engineering - Part A, 2017, , .	3.1	0
399	Engineering Vascular Niche for Bone Tissue Regeneration. , 2017, , 517-529.		0
400	Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 2006, .	4.6	0
401	Engineered tissue grafts: A new class of biomaterials for medical use. Chemical Industry and Chemical Engineering Quarterly, 2008, 14, 211-214.	0.7	0
402	Two-Photon Imaging for the Non-Invasive Assessment of Electric Field Effects on Osteogenic Stem Cell Differentiation. , 2008, , .		0
403	Subpixel Texture Correlation for Contractile Behaviors of Engineered Cardiac Tissue. , 2009, , .		0
404	Biomimetic Approaches to Design of Tissue Engineering Bioreactors. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 115-129.	0.5	0
405	Engineering human tissues. Scripta Medica, 2010, 41, 83-87.	0.1	0
406	Myocardial Regeneration through Tissue Engineering. FASEB Journal, 2012, 26, 459.4.	0.5	0
407	Minimally Invasive In Situ Imaging of Intra-tracheally Administered Therapeutic Stem Cells in the Lung. , 2017, , .		0
408	Engineered Vascularized Flaps, Composed of Polymeric Soft Tissue and Live Bone, Repair Complex Tibial Defects (Adv. Funct. Mater. 44/2021). Advanced Functional Materials, 2021, 31, 2170325.	14.9	0
409	A Micropatterning Assay for Measuring Cell Chirality. Journal of Visualized Experiments, 2022, , .	0.3	0
410	Imaging-Guided Bioreactor for Generating Bioengineered Airway Tissue. Journal of Visualized Experiments, 2022, , .	0.3	0
411	Engineering and Characterization of an Optogenetic Model of the Human Neuromuscular Junction. Journal of Visualized Experiments, 2022, , .	0.3	0
412	Characterization of Electrical Stimulation Electrodes for Cardiac Tissue Engineering. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
413	Abstract 20932: Dynamic Regulation of Myocardial Long Noncoding RNAs in Human Heart Failure and Reverse Remodeling With Left Ventricular Assist Device Support. Circulation, 2017, 136, .	1.6	0