Robert N Kelsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6884014/publications.pdf

Version: 2024-02-01

89 papers 6,525 citations

39 h-index 69250 77 g-index

106 all docs

106 docs citations

106 times ranked 6030 citing authors

#	Article	IF	CITATIONS
1	Vertebrate genome evolution and the zebrafish gene map. Nature Genetics, 1998, 18, 345-349.	21.4	792
2	Zebrafish <i>colourless</i> encodes <i>sox10</i> and specifies non-ectomesenchymal neural crest fates. Development (Cambridge), 2001, 128, 4113-4125.	2.5	449
3	In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nature Neuroscience, 2006, 9, 1506-1511.	14.8	353
4	A direct role for $Sox10$ in specification of neural crest-derived sensory neurons. Development (Cambridge), 2006, 133, 4619-4630.	2.5	267
5	Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development (Cambridge), 2005, 132, 3977-3988.	2.5	265
6	Genetics and Evolution of Pigment Patterns in Fish. Pigment Cell & Melanoma Research, 2004, 17, 326-336.	3.6	237
7	Sorting outSox10 functions in neural crest development. BioEssays, 2006, 28, 788-798.	2.5	229
8	Mutational Analysis of Endothelin Receptor b1 (rose) during Neural Crest and Pigment Pattern Development in the Zebrafish Danio rerio. Developmental Biology, 2000, 227, 294-306.	2.0	209
9	Stripes and belly-spots—A review of pigment cell morphogenesis in vertebrates. Seminars in Cell and Developmental Biology, 2009, 20, 90-104.	5.0	180
10	Genetic Analysis of Melanophore Development in Zebrafish Embryos. Developmental Biology, 2000, 225, 277-293.	2.0	168
11	Mutations affecting pigmentation and shape of the adult zebrafish. Development Genes and Evolution, 1996, 206, 260-276.	0.9	164
12	Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development (Cambridge), 2016, 143, 1328-39.	2.5	163
13	Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development (Cambridge), 2003, 130, 2809-2818.	2.5	151
14	Leukocyte Tyrosine Kinase Functions in Pigment Cell Development. PLoS Genetics, 2008, 4, e1000026.	3.5	137
15	Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent. Mechanisms of Development, 2005, 122, 659-669.	1.7	126
16	The origin and evolution of the neural crest. BioEssays, 2008, 30, 530-541.	2.5	124
17	Roles for GFRα1 receptors in zebrafish enteric nervous system development. Development (Cambridge), 2004, 131, 241-249.	2.5	109
18	Homeotic gene expression in the locustSchistocerca: An antibody that detects conserved epitopes in ultrabithorax and abdominal-A proteins. Genesis, 1994, 15, 19-31.	2.1	107

#	Article	IF	CITATIONS
19	What is a vertebrate pigment cell?. Pigment Cell and Melanoma Research, 2016, 29, 8-14.	3.3	106
20	Mutations in C10orf11, a Melanocyte-Differentiation Gene, Cause Autosomal-Recessive Albinism. American Journal of Human Genetics, 2013, 92, 415-421.	6.2	103
21	Expression of zebrafish fkd6 in neural crest-derived glia. Mechanisms of Development, 2000, 93, 161-164.	1.7	99
22	An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10. BMC Developmental Biology, 2008, 8, 105.	2.1	99
23	The proliferating field of neural crest stem cells. Developmental Dynamics, 2007, 236, 3242-3254.	1.8	89
24	Osteocalcin and matrix Gla protein in zebrafish (Danio rerio) and Senegal sole (Solea senegalensis): Comparative gene and protein expression during larval development through adulthood. Gene Expression Patterns, 2006, 6, 637-652.	0.8	84
25	The emergence of ectomesenchyme. Developmental Dynamics, 2008, 237, 592-601.	1.8	79
26	The Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development. Mechanisms of Development, 2004, 121, 841-859.	1.7	77
27	Deletion of long-range sequences at Sox10 compromises developmental expression in a mouse model of Waardenburg–Shah (WS4) syndrome. Human Molecular Genetics, 2006, 15, 259-271.	2.9	60
28	Small molecule screening identifies targetable zebrafish pigmentation pathways. Pigment Cell and Melanoma Research, 2012, 25, 131-143.	3.3	60
29	Sdf1a patterns zebrafish melanophores and links the somite and melanophore pattern defects in choker mutants. Development (Cambridge), 2007, 134, 1011-1022.	2.5	59
30	An Iterative Genetic and Dynamical Modelling Approach Identifies Novel Features of the Gene Regulatory Network Underlying Melanocyte Development. PLoS Genetics, 2011, 7, e1002265.	3.5	59
31	Anaplastic Lymphoma Kinase Is Required for Neurogenesis in the Developing Central Nervous System of Zebrafish. PLoS ONE, 2013, 8, e63757.	2.5	59
32	Chemical genetics suggests a critical role for lysyl oxidase in zebrafish notochord morphogenesis. Molecular BioSystems, 2007, 3, 51-59.	2.9	58
33	Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development. PLoS Genetics, 2014, 10, e1004246.	3.5	55
34	Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms. Pigment Cell and Melanoma Research, 2015, 28, 196-209.	3.3	55
35	Pigment pattern formation in the medaka embryo. Pigment Cell & Melanoma Research, 2005, 18, 64-73.	3.6	51
36	Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genetics, 2018, 14 , e1007260.	3.5	51

#	Article	IF	CITATIONS
37	A morpholino phenocopy of thecolourless mutant. Genesis, 2001, 30, 188-189.	1.6	50
38	A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle. DMM Disease Models and Mechanisms, 2009, 2, 68-83.	2.4	48
39	Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation. Scientific Reports, 2019, 9, 3449.	3. 3	45
40	Differentiated melanocyte cell division occurs in vivo and is promoted by mutations in Mitf. Development (Cambridge), 2011, 138, 3579-3589.	2.5	44
41	A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genetics, 2018, 14, e1007402.	3 . 5	44
42	A novel transgenic line using the Cre–lox system to allow permanent lineageâ€labeling of the zebrafish neural crest. Genesis, 2012, 50, 750-757.	1.6	39
43	Enteric glia as a source of neural progenitors in adult zebrafish. ELife, 2020, 9, .	6.0	39
44	Regulation of neural crest cell fate by the retinoic acid and Pparg signalling pathways. Development (Cambridge), 2010, 137, 389-394.	2.5	38
45	A quantitative modelling approach to zebrafish pigment pattern formation. ELife, 2020, 9, .	6.0	35
46	A Systematic Survey of Expression and Function of Zebrafish frizzled Genes. PLoS ONE, 2013, 8, e54833.	2.5	32
47	Lossâ€ofâ€function mutations in the melanocortin 1 receptor cause disruption of dorsoâ€ventral countershading in teleost fish. Pigment Cell and Melanoma Research, 2019, 32, 817-828.	3.3	31
48	The MITF paralog tfec is required in neural crest development for fate specification of the iridophore lineage from a multipotent pigment cell progenitor. PLoS ONE, 2021, 16, e0244794.	2.5	30
49	Thyroid Hormones Regulate Zebrafish Melanogenesis in a Gender-Specific Manner. PLoS ONE, 2016, 11, e0166152.	2.5	30
50	Specification of Zebrafish Neural Crest. Results and Problems in Cell Differentiation, 2002, 40, 216-236.	0.7	29
51	An ongoing role for <i>Wnt</i> signaling in differentiating melanocytes inÂvivo. Pigment Cell and Melanoma Research, 2017, 30, 219-232.	3. 3	28
52	Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors. PLoS ONE, 2017, 12, e0172947.	2.5	24
53	Deciphering the cellular and molecular roles of cellular nucleic acid binding protein during cranial neural crest development. Development Growth and Differentiation, 2011, 53, 934-947.	1.5	22
54	Endothelin neurotransmitter signalling controls zebrafish social behaviour. Scientific Reports, 2019, 9, 3040.	3.3	22

#	Article	IF	Citations
55	Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish. PLoS Genetics, 2019, 15, e1007941.	3.5	22
56	Identification of a Promoter Element within the Zebrafish colXα1 Gene Responsive to Runx2 Isoforms Osf2/Cbfa1 and til-1 but not to pebp2αA2. Calcified Tissue International, 2006, 79, 230-244.	3.1	20
57	Functional nasal morphology of chimaerid fishes. Journal of Morphology, 2013, 274, 987-1009.	1.2	20
58	Cyclical fate restriction: a new view of neural crest cell fate specification. Development (Cambridge), 2021, 148, .	2.5	20
59	A Nervous Origin for Fish Stripes. PLoS Genetics, 2011, 7, e1002081.	3.5	19
60	Functional constraints on SoxE proteins in neural crest development: The importance of differential expression for evolution of protein activity. Developmental Biology, 2016, 418, 166-178.	2.0	17
61	Geographic variation in breeding system and environment predicts melanin-based plumage ornamentation of male and female Kentish plovers. Behavioral Ecology and Sociobiology, 2016, 70, 49-60.	1.4	17
62	Identification of a New pebp2αA2 Isoform From Zebrafishrunx2Capable of Inducing Osteocalcin Gene Expression In Vitro. Journal of Bone and Mineral Research, 2005, 20, 1440-1453.	2.8	16
63	The INT6 Cancer Gene and MEK Signaling Pathways Converge during Zebrafish Development. PLoS ONE, 2007, 2, e959.	2.5	16
64	A Simple, Highly Visual <i>in Vivo</i> Screen for Anaplastic Lymphoma Kinase Inhibitors. ACS Chemical Biology, 2012, 7, 1968-1974.	3.4	16
65	Neural Crest Cells and Pigmentation. , 2014, , 287-311.		14
66	Notch controls the cell cycle to define leader versus follower identities during collective cell migration. ELife, 2022, 11 , .	6.0	14
67	Zebrafish adult pigment stem cells are multipotent and form pigment cells by a progressive fate restriction process. BioEssays, 2017, 39, 1600234.	2.5	12
68	Dicer1 is required for pigment cell and craniofacial development in zebrafish. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 472-485.	1.9	12
69	A structural variant in the 5'-flanking region of the TWIST2 gene affects melanocyte development in belted cattle. PLoS ONE, 2017, 12, e0180170.	2.5	12
70	Review: The Role of Wnt/ \hat{l}^2 -Catenin Signalling in Neural Crest Development in Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 782445.	3.7	12
71	Dual transcriptional regulation by runx2 of matrix Gla protein in Xenopus laevis. Gene, 2010, 450, 94-102.	2.2	9
72	Do you have to be albino to be albino?. Pigment Cell and Melanoma Research, 2014, 27, 325-326.	3.3	9

#	Article	IF	Citations
73	EuFishBioMed (COST Action BM0804): A European Network to Promote the Use of Small Fishes in Biomedical Research. Zebrafish, 2012, 9, 90-93.	1.1	7
74	Melanoma in mankind's best friend. Pigment Cell and Melanoma Research, 2014, 27, 1-1.	3.3	7
75	A suitable anaesthetic protocol for metamorphic zebrafish. PLoS ONE, 2021, 16, e0246504.	2.5	7
76	Pigment Cell Development in Teleosts. , 2021, , 209-246.		6
77	Novel generic models for differentiating stem cells reveal oscillatory mechanisms. Journal of the Royal Society Interface, 2021, 18, 20210442.	3.4	6
78	Contribution of $\langle i \rangle sox9b \langle i \rangle$ to pigment cell formation in medaka fish. Development Growth and Differentiation, 2021, 63, 516-522.	1.5	5
79	Why should biomedical scientists care about biodiversity?. Current Biology, 2011, 21, R210-R211.	3.9	4
80	Taste buds are not derived from neural crest in mouse, chicken, and zebrafish. Developmental Biology, 2021, 471, 76-88.	2.0	4
81	Agolden clue to human skin colour variation. BioEssays, 2006, 28, 578-582.	2.5	3
82	Pigment Patterning in Teleosts., 2021,, 247-292.		3
83	Cell Fate Decisions in the Neural Crest, from Pigment Cell to Neural Development. International Journal of Molecular Sciences, 2021, 22, 13531.	4.1	3
84	Trunk Neural Crest Migratory Position and Asymmetric Division Predict Terminal Differentiation. Frontiers in Cell and Developmental Biology, 0, 10 , .	3.7	2
85	A pigment evolution Kitlg. Pigment Cell and Melanoma Research, 2008, 21, 113-114.	3.3	1
86	Gnawing at striping – how rodents evolve striped patterns. Pigment Cell and Melanoma Research, 2017, 30, 181-182.	3.3	1
87	Spotting a role for an Ig superfamily cell adhesion molecule in pigment pattern formation. Pigment Cell and Melanoma Research, 2013, 26, 161-162.	3.3	0
88	Taking striping up a notch. Pigment Cell and Melanoma Research, 2014, 27, 688-689.	3.3	0
89	Reflecting on the iridophore transcriptome, and more. Pigment Cell and Melanoma Research, 2014, 27, 2-3.	3.3	0