List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6881170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	G protein-coupled receptors: novel targets for drug discovery in cancer. Nature Reviews Drug Discovery, 2011, 10, 47-60.	46.4	629
2	G Protein–Coupled Receptor 30 (GPR30) Mediates Gene Expression Changes and Growth Response to 17β-Estradiol and Selective GPR30 Ligand G-1 in Ovarian Cancer Cells. Cancer Research, 2007, 67, 1859-1866.	0.9	383
3	Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO Journal, 2009, 28, 523-532.	7.8	283
4	17β-Estradiol, Genistein, and 4-Hydroxytamoxifen Induce the Proliferation of Thyroid Cancer Cells through the G Protein-Coupled Receptor GPR30. Molecular Pharmacology, 2006, 70, 1414-1423.	2.3	269
5	Bisphenol A Induces Gene Expression Changes and Proliferative Effects through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts. Environmental Health Perspectives, 2012, 120, 1177-1182.	6.0	234
6	HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Research, 2013, 15, R64.	5.0	173
7	The Novel Estrogen Receptor, G Protein-Coupled Receptor 30, Mediates the Proliferative Effects Induced by 17β-Estradiol on Mouse Spermatogonial GC-1 Cell Line. Endocrinology, 2008, 149, 5043-5051.	2.8	147
8	Epidermal Growth Factor Induces G Protein-Coupled Receptor 30 Expression in Estrogen Receptor-Negative Breast Cancer Cells. Endocrinology, 2008, 149, 3799-3808.	2.8	131
9	Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget, 2015, 6, 34158-34177.	1.8	128
10	G Protein-Coupled Receptor 30 Expression Is Up-Regulated by EGF and TGFα in Estrogen Receptor α-Positive Cancer Cells. Molecular Endocrinology, 2009, 23, 1815-1826.	3.7	121
11	A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics, 2022, 11, 191.	3.7	120
12	Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Molecular and Cellular Endocrinology, 2010, 320, 162-170.	3.2	106
13	GPER Mediates Activation of HIF1α/VEGF Signaling by Estrogens. Cancer Research, 2014, 74, 4053-4064.	0.9	105
14	The Cholesterol Metabolite 25-Hydroxycholesterol Activates Estrogen Receptor α-Mediated Signaling in Cancer Cells and in Cardiomyocytes. PLoS ONE, 2011, 6, e16631.	2.5	94
15	G Protein-coupled Estrogen Receptor Mediates the Up-regulation of Fatty Acid Synthase Induced by 17β-Estradiol in Cancer Cells and Cancer-associated Fibroblasts. Journal of Biological Chemistry, 2012, 287, 43234-43245.	3.4	87
16	Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth. Breast Cancer Research and Treatment, 2014, 146, 273-285.	2.5	87
17	GPCRs and cancer. Acta Pharmacologica Sinica, 2012, 33, 351-362.	6.1	85
18	GPER Function in Breast Cancer: An Overview. Frontiers in Endocrinology, 2014, 5, 66.	3.5	82

#	Article	IF	CITATIONS
19	MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells. Breast Cancer Research, 2012, 14, R12.	5.0	81
20	The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Discovery, 2017, 3, 17063.	4.7	79
21	Cross-talk between GPER and growth factor signaling. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 50-56.	2.5	73
22	IGF-I induces upregulation of DDR1 collagen receptor in breast cancer cells by suppressing MIR-199a-5p through the PI3K/AKT pathway. Oncotarget, 2016, 7, 7683-7700.	1.8	69
23	Effects of Atrazine on Estrogen Receptor α – and G Protein–Coupled Receptor 30–Mediated Signaling and Proliferation in Cancer Cells and Cancer-Associated Fibroblasts. Environmental Health Perspectives, 2015, 123, 493-499.	6.0	64
24	GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL11²/IL1R1 response. Scientific Reports, 2016, 6, 24354.	3.3	64
25	New advances on the functional cross-talk between insulin-like growth factor-I and estrogen signaling in cancer. Cellular Signalling, 2012, 24, 1515-1521.	3.6	63
26	Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 58.	8.6	60
27	GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment. Breast Cancer Research, 2017, 19, 129.	5.0	59
28	IGF-1/IGF-1R/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells, 2020, 9, 1010.	4.1	58
29	GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget, 2016, 7, 94-111.	1.8	57
30	The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives. Cancers, 2020, 12, 3029.	3.7	54
31	miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling. Journal of Experimental and Clinical Cancer Research, 2018, 37, 94.	8.6	49
32	Glycerophospholipid Synthesis as a Novel Drug Target Against Cancer. Current Molecular Pharmacology, 2011, 4, 167-175.	1.5	49
33	Structure–activity relationships of resveratrol and derivatives in breast cancer cells. Molecular Nutrition and Food Research, 2009, 53, 845-858.	3.3	47
34	A sexually dimorphic distribution pattern of the novel estrogen receptor G-protein-coupled receptor 30 in some brain areas of the hamster. Journal of Endocrinology, 2007, 196, 131-138.	2.6	43
35	GPER, IGFâ€IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancerâ€associated fibroblasts. Molecular Carcinogenesis, 2017, 56, 580-593.	2.7	43
36	The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs). Journal of Experimental and Clinical Cancer Research, 2020, 39, 153.	8.6	43

#	Article	IF	CITATIONS
37	Niacin activates the G protein estrogen receptor (GPER)-mediated signalling. Cellular Signalling, 2014, 26, 1466-1475.	3.6	42
38	Recent views of heavy metals as possible risk factors and potential preventive and therapeutic agents in prostate cancer. Molecular and Cellular Endocrinology, 2017, 457, 57-72.	3.2	42
39	Cancer associated fibroblasts: role in breast cancer and potential as therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 559-572.	3.4	42
40	GPER Mediates a Feedforward FGF2/FGFR1 Paracrine Activation Coupling CAFs to Cancer Cells Toward Breast Tumor Progression. Cells, 2019, 8, 223.	4.1	41
41	Recent advances on the stimulatory effects of metals in breast cancer. Molecular and Cellular Endocrinology, 2017, 457, 49-56.	3.2	39
42	GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). Journal of Steroid Biochemistry and Molecular Biology, 2018, 176, 49-56.	2.5	39
43	Synthesis, characterization and cytotoxic activity on breast cancer cells of new half-titanocene derivatives. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3458-3462.	2.2	38
44	DDR1 regulates thyroid cancer cell differentiation via IGF-2/IR-A autocrine signaling loop. Endocrine-Related Cancer, 2019, 26, 197-214.	3.1	38
45	GPER1 is regulated by insulin in cancer cells and cancer-associated fibroblasts. Endocrine-Related Cancer, 2014, 21, 739-753.	3.1	37
46	Rhenium(iv) compounds inducing apoptosis in cancer cells. Chemical Communications, 2011, 47, 5283.	4.1	35
47	Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells. Oncotarget, 2016, 7, 52710-52728.	1.8	35
48	GPCR Modulation in Breast Cancer. International Journal of Molecular Sciences, 2018, 19, 3840.	4.1	35
49	SLC37A1 Gene expression is up-regulated by epidermal growth factor in breast cancer cells. Breast Cancer Research and Treatment, 2010, 122, 755-764.	2.5	32
50	A calixpyrrole derivative acts as a GPER antagonist: mechanisms and models. DMM Disease Models and Mechanisms, 2015, 8, 1237-46.	2.4	32
51	AHR and GPER mediate the stimulatory effects induced by 3-methylcholanthrene in breast cancer cells and cancer-associated fibroblasts (CAFs). Journal of Experimental and Clinical Cancer Research, 2019, 38, 335.	8.6	32
52	Macromolecular Modelling and Docking Simulations for the Discovery of Selective GPER Ligands. AAPS Journal, 2016, 18, 41-46.	4.4	30
53	A genetic polymorphism repurposes the G-protein coupled and membrane-associated estrogen receptor GPER to a transcription factor-like molecule promoting paracrine signaling between stroma and breast carcinoma cells. Oncotarget, 2017, 8, 46728-46744.	1.8	30
54	The Physiopathological Role of the Exchangers Belonging to the SLC37 Family. Frontiers in Chemistry, 2018, 6, 122.	3.6	29

#	Article	IF	CITATIONS
55	Focal Adhesion Kinase Fine Tunes Multifaced Signals toward Breast Cancer Progression. Cancers, 2021, 13, 645.	3.7	29
56	The G Protein-Coupled Estrogen Receptor (GPER) Expression Correlates with Pro-Metastatic Pathways in ER-Negative Breast Cancer: A Bioinformatics Analysis. Cells, 2020, 9, 622.	4.1	28
57	G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts. International Journal of Molecular Sciences, 2017, 18, 2713.	4.1	27
58	(6-Bromo-1,4-dimethyl-9 <i>H</i> -carbazol-3-yl-methylene)-hydrazine (Carbhydraz) Acts as a GPER Agonist in Breast Cancer Cells. Current Topics in Medicinal Chemistry, 2015, 15, 1035-1042.	2.1	27
59	miR-338-3p Is Regulated by Estrogens through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (CAFs). Cells, 2018, 7, 203.	4.1	25
60	GPER is involved in the regulation of the estrogen-metabolizing CYP1B1 enzyme in breast cancer. Oncotarget, 2017, 8, 106608-106624.	1.8	25
61	A novel functional crosstalk between DDR1 and the IGF axis and its relevance for breast cancer. Cell Adhesion and Migration, 2018, 12, 1-10.	2.7	24
62	Recent Advances on the Role of G Protein-Coupled Receptors in Hypoxia-Mediated Signaling. AAPS Journal, 2016, 18, 305-310.	4.4	23
63	The G protein estrogen receptor (GPER) is regulated by endothelin-1 mediated signaling in cancer cells. Cellular Signalling, 2016, 28, 61-71.	3.6	23
64	Activation of the S100A7/RAGE Pathway by IGF-1 Contributes to Angiogenesis in Breast Cancer. Cancers, 2021, 13, 621.	3.7	22
65	Newly Synthesized Imino-Derivatives Analogues of Resveratrol Exert Inhibitory Effects in Breast Tumor Cells. International Journal of Molecular Sciences, 2020, 21, 7797.	4.1	21
66	New titanocene derivatives with high antiproliferative activity against breast cancer cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 136-140.	2.2	19
67	Pharmacotherapeutic Targeting of G Protein-Coupled Receptors in Oncology: Examples of Approved Therapies and Emerging Concepts. Drugs, 2017, 77, 951-965.	10.9	17
68	The Peptide ERα17p Is a GPER Inverse Agonist that Exerts Antiproliferative Effects in Breast Cancer Cells. Cells, 2019, 8, 590.	4.1	17
69	Functional characterization of the partially purified Sac1p independent adenine nucleotide transport system (ANTS) from yeast endoplasmic reticulum. Journal of Biochemistry, 2018, 164, 313-322.	1.7	16
70	Computational Approaches for the Discovery of GPER Targeting Compounds. Frontiers in Endocrinology, 2020, 11, 517.	3.5	16
71	Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Frontiers in Cell and Developmental Biology, 2020, 8, 608412.	3.7	16
72	Novel Mechanisms of Tumor Promotion by the Insulin Receptor Isoform A in Triple-Negative Breast Cancer Cells. Cells, 2021, 10, 3145.	4.1	14

#	Article	IF	CITATIONS
73	Different 6-Aryl-Fulvenes Exert Anti-proliferative effects on Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 468-474.	1.7	12
74	E-cadherin mediates the aggregation of breast cancer cells induced by tamoxifen and epidermal growth factor. Breast Cancer Research and Treatment, 2010, 121, 79-89.	2.5	9
75	DDR1 Affects Metabolic Reprogramming in Breast Cancer Cells by Cross-Talking to the Insulin/IGF System. Biomolecules, 2021, 11, 926.	4.0	9
76	Interaction of the Anti-Proliferative GPER Inverse Agonist ERα17p with the Breast Cancer Cell Plasma Membrane: From Biophysics to Biology. Cells, 2020, 9, 447.	4.1	8
77	Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers, 2022, 14, 539.	3.7	8
78	Composition, Antifungal and Antiproliferative Activities of the Hydrodistilled Oils from Leaves and Flower Heads of <i>Pterocephalus nestorianus</i> N <scp>ábělek</scp> . Chemistry and Biodiversity, 2017, 14, e1700009.	2.1	7
79	Triple-negative breast cancer drug resistance, durable efficacy, and cure: how advanced biological insights and emerging drug modalities could transform progress. Expert Opinion on Therapeutic Targets, 2022, 26, 513-535.	3.4	6
80	Highly Cytotoxic Xanthones from <i>Cratoxylum cochinchinense</i> Collected in Myanmar. Natural Product Communications, 2017, 12, 1934578X1701201.	0.5	5
81	Estrogen receptor variant ERα46 and insulin receptor drive in primary breast cancer cells growth effects and interleukin 11 induction prompting the motility of cancerâ€associated fibroblasts. Clinical and Translational Medicine, 2021, 11, e516.	4.0	3
82	Cytotoxic, Anti-bacterial, and Wound-healing Activity of Prenylated Phenols from the Kurdish Traditional Medicinal Plant Onobrychis Carduchorum (Fabaceae). Planta Medica International Open, 2020, 07, e106-e113.	0.5	2
83	Multifactorial Regulation of GPER Expression in Cancer Cells and Cardiomyocytes. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2011, 11, 235-242.	0.5	2
84	Response to "Comment on â€~Effects of Atrazine on Estrogen Receptor α– and G Protein–Coupled Receptor 30–Mediated Signaling and Proliferation in Cancer Cells and Cancer-Associated Fibroblasts'― Environmental Health Perspectives, 2016, 124, A65.	6.0	0
85	Unraveling the Role of GPER in Breast Cancer. , 2012, , 115-127.		Ο
86	Estrogen Signaling. , 2014, , 1-4.		0
87	Estrogen Signaling. , 2014, , 1637-1640.		0