
Yang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6880284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two optimized post-heat treatments to achieve high-performance 90W–7Ni–3Fe alloys fabricated by laser-directed energy deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142561.	5.6	6
2	Grain boundary effects on spall behavior of high purity copper cylinder under sweeping detonation. Journal of Central South University, 2022, 29, 1107-1117.	3.0	1
3	Effects of fibrous Cr phase on the adiabatic shearing anisotropic behavior of the Cu-15Cr in-situ composite. Journal of Alloys and Compounds, 2022, 916, 165409.	5.5	1
4	Effects of the phase content on dynamic damage evolution in Fe50Mn30Co10Cr10 high entropy alloy. Journal of Alloys and Compounds, 2021, 851, 156883.	5.5	24
5	Effects of microstructure on the evolution of dynamic damage of Fe50Mn30Co10Cr10 high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140440.	5.6	14
6	Effect of Grain Size on Adiabatic Shear Susceptibility of Copper. Journal of Materials Engineering and Performance, 2021, 30, 2798-2805.	2.5	6
7	Effects of the Phase Content on Spallation Damage Behavior in Dual-Phase Steel. Journal of Materials Engineering and Performance, 2021, 30, 5614-5624.	2.5	4
8	The Characteristic and Thermodynamics/Kinetics of Martensitic Transformation in Fe ₅₀ Mn ₃₀ Co ₁₀ Cr ₁₀ Highâ€Entropy Alloy during Deformation/Heat Treatment. Advanced Engineering Materials, 2020, 22, 1900868.	3.5	6
9	Thermodynamics-kinetics of twinning/martensitic transformation in Fe50Mn30Co10Cr10 high-entropy alloy during adiabatic shearing. Scripta Materialia, 2020, 181, 115-120.	5.2	22
10	Effect of strain rate on self-organisation of adiabatic shear bands in steel. Materials Science and Technology, 2020, 36, 556-563.	1.6	1
11	Effects of the Phase Interface on Spallation Damage Nucleation and Evolution in Dualâ€Phase Steel. Steel Research International, 2020, 91, 1900583.	1.8	8
12	Adiabatic Shear Susceptibility of Fe50Mn30Co10Cr10 High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1771-1780.	2.2	13
13	Surface gradient microstructural characteristics and evolution mechanism of 2195 aluminum lithium alloy induced by laser shock peening. Optics and Laser Technology, 2019, 109, 1-7.	4.6	33
14	Study on the microstructural characteristics of adiabatic shear band in solid-solution treated ZK60 magnesium alloy. Materials Characterization, 2019, 156, 109840.	4.4	24
15	Effect of laser shock peening and annealing temperatures on stability of AA2195 alloy near-surface microstructure. Optics and Laser Technology, 2019, 119, 105569.	4.6	6
16	Effect of the grain boundary character distribution on the self-organization of adiabatic shear bands in 1Cr18Ni9Ti austenitic stainless steel. Journal of Materials Science, 2019, 54, 7256-7270.	3.7	11
17	Effects of laser shock peening on microstructures and properties of 2195 Al-Li alloy. Journal of Alloys and Compounds, 2019, 781, 330-336.	5.5	34
18	Effects of the phase interface on spallation damage nucleation and evolution in multiphase alloy. Journal of Alloys and Compounds, 2018, 740, 321-329.	5.5	11

YANG YANG

#	Article	IF	CITATIONS
19	The characteristics of void distribution in spalled high purity copper cylinder under sweeping detonation. Philosophical Magazine, 2018, 98, 752-765.	1.6	6
20	Microstructure evolution within adiabatic shear band in peak aged ZK60 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 317-324.	5.6	52
21	Effect of strain rate on microstructural evolution and thermal stability of 1050 commercial pure aluminum. Transactions of Nonferrous Metals Society of China, 2018, 28, 1-8.	4.2	13
22	The void nucleation mechanism within lead phase during spallation of leaded brass. Philosophical Magazine, 2018, 98, 1975-1990.	1.6	10
23	Effects of the phase interface on initial spallation damage nucleation and evolution in dual phase titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 385-393.	5.6	15
24	Thermal stability of microstructures induced by laser shock peening in TC17 titanium alloy. Journal of Alloys and Compounds, 2018, 767, 253-258.	5.5	12
25	Evolution of precipitates in ZK60 magnesium alloy during high strain rate deformation. Journal of Alloys and Compounds, 2017, 705, 566-571.	5.5	35
26	Microstructure characteristics and formation mechanism of TC17 titanium alloy induced by laser shock processing. Journal of Alloys and Compounds, 2017, 722, 509-516.	5.5	48
27	3-D characterization of incipient spallation response in cylindrical copper under sweeping detonation. Journal of Materials Research, 2017, 32, 1499-1505.	2.6	9
28	An examination of adiabatic shearing behavior in ZK60 alloy with different states of heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 57-64.	5.6	20
29	Effect of Grain Boundary Character Distribution on the Adiabatic Shear Susceptibility. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5589-5597.	2.2	6
30	Diffusive transformation at high strain rate: On instantaneous dissolution of precipitates in aluminum alloy during adiabatic shear deformation. Journal of Materials Research, 2016, 31, 1220-1228.	2.6	21
31	Effect of heat treatment on adiabatic shear susceptibility in ZK60 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 664, 146-154.	5.6	18
32	Effects of Dynamic Multi-directional Loading on the Microstructural Evolution and Thermal Stability of Pure Aluminum. Journal of Materials Engineering and Performance, 2016, 25, 3924-3930.	2.5	4
33	X-ray quantitative analysis on spallation response in high purity copper under sweeping detonation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 54-60.	5.6	14
34	Effect of Strain on Microstructure Evolution of 1Cr18Ni9Ti Stainless Steel During Adiabatic Shearing. Journal of Materials Engineering and Performance, 2016, 25, 29-37.	2.5	17
35	Spall behaviors of high purity copper under sweeping detonation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 636-645.	5.6	23
36	Self-organization of adiabatic shear bands in ZK60 Magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 321-330.	5.6	21

YANG YANG

#	Article	IF	CITATIONS
37	High-entropy alloy: challenges and prospects. Materials Today, 2016, 19, 349-362.	14.2	1,698
38	Microstructural evolution and thermal stability of 1050 commercial pure aluminum processed by high-strain-rate deformation. Journal of Materials Research, 2015, 30, 3502-3509.	2.6	4
39	Study on the characteristics and thermal stability of nanostructures in adiabatic shear band of 2195 Al–Li alloy. Applied Physics A: Materials Science and Processing, 2015, 121, 1277-1284.	2.3	10
40	Multidimensional Study on Spall Behavior of High-Purity Copper Under Sliding Detonation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4070-4077.	2.2	14
41	Microstructure Evolution of 1050 Commercial Purity Aluminum Processed by High-Strain-Rate Deformation. Journal of Materials Engineering and Performance, 2015, 24, 4307-4312.	2.5	6
42	Microstructure evolution of 2195 Al–Li alloy subjected to high-strain-rate deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 299-303.	5.6	15
43	Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 2013, 61, 2628-2638.	7.9	1,004
44	Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum–lithium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 546, 279-283.	5.6	13
45	Microstructural characterization and evolution mechanism of adiabatic shear band in a near beta-Ti alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2787-2794.	5.6	79
46	Effect of orientation on self-organization of shear bands in 7075 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2446-2453.	5.6	34
47	Effects of microstructure on the adiabatic shearing behaviors of titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3130-3133.	5.6	37
48	Effect of phase composition on self-organization of shear bands in Ti-1300 titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7506-7513.	5.6	27
49	Observation of the microstructure in the adiabatic shear band of 7075 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3529-3535.	5.6	72
50	Effects of pre-notches on the self-organization behaviors of shear bands in aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5084-5091.	5.6	19
51	Microstructure evolution in adiabatic shear band in fine-grain-sized Ti–3Al–5Mo–4.5V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 306-311.	5.6	45
52	Damage and fracture mechanism of aluminium alloy thick-walled cylinder under external explosive loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 490, 378-384.	5.6	21
53	Numerical and experimental studies of self-organization of shear bands in 7075 aluminium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 496, 291-302.	5.6	29
54	Adiabatic shear bands in α-titanium tube under external explosive loading. Journal of Materials Science, 2007, 42, 8101-8105.	3.7	15

YANG YANG

#	Article	IF	CITATIONS
55	Adiabatic shear bands on the titanium side in the titanium/mild steel explosive cladding interface: Experiments, numerical simulation, and microstructure evolution. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 3131-3137.	2.2	32
56	Dynamic recrystallization in adiabatic shear band in α-titanium. Materials Letters, 2006, 60, 2198-2202.	2.6	64
57	Adiabatic shear band on the titanium side in the Ti/mild steel explosive cladding interface. Acta Materialia, 1996, 44, 561-565.	7.9	86
58	Multi-dimensional Effect of Heat Treatment on Microstructure and Property of Ti6Al4V Alloy Fabricated by Selective Electron Beam Melting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 0, , .	2.2	0