Liming Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/687960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	18% Efficiency organic solar cells. Science Bulletin, 2020, 65, 272-275.	4.3	2,380
2	Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094-1098.	6.0	2,262
3	Ternary organic solar cells offer 14% power conversion efficiency. Science Bulletin, 2017, 62, 1562-1564.	4.3	665
4	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	5.6	482
5	An 80.11% FF record achieved for perovskite solar cells by using the NH ₄ Cl additive. Nanoscale, 2014, 6, 9935-9938.	2.8	368
6	26 mA cmâ^'2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Science Bulletin, 2017, 62, 1494-1496.	4.3	368
7	A History and Perspective of Nonâ€Fullerene Electron Acceptors for Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003570.	10.2	323
8	One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46, 185-192.	8.2	271
9	Thermostable single-junction organic solar cells with a power conversion efficiency of 14.62%. Science Bulletin, 2018, 63, 340-342.	4.3	260
10	Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency. Joule, 2021, 5, 467-480.	11.7	245
11	Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells. Joule, 2019, 3, 819-833.	11.7	209
12	Modified PEDOT Layer Makes a 1.52 V <i>V</i> _{oc} for Perovskite/PCBM Solar Cells. Advanced Energy Materials, 2017, 7, 1601193.	10.2	189
13	Leadâ€free Perovskite Materials (NH ₄) ₃ Sb ₂ I _x Br _{9â^'<i>x</i>} . Angewandte Chemie - International Edition, 2017, 56, 6528-6532.	7.2	180
14	Over 13% Efficiency Ternary Nonfullerene Polymer Solar Cells with Tilted Up Absorption Edge by Incorporating a Medium Bandgap Acceptor. Advanced Energy Materials, 2018, 8, 1801968.	10.2	167
15	Highâ€Performance Flexible Perovskite Solar Cells via Precise Control of Electron Transport Layer. Advanced Energy Materials, 2019, 9, 1901419.	10.2	167
16	Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nature Communications, 2020, 11, 582.	5.8	167
17	Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy and Environmental Science, 2021, 14, 3233-3255.	15.6	166
18	Halide Perovskite, a Potential Scintillator for Xâ€Ray Detection. Small Methods, 2020, 4, 2000506.	4.6	160

#	Article	IF	CITATIONS
19	Progress of the key materials for organic solar cells. Science China Chemistry, 2020, 63, 758-765.	4.2	158
20	A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. Journal of Semiconductors, 2021, 42, 010501.	2.0	158
21	Highâ€Performance Polymer Tandem Solar Cells Employing a New nâ€Type Conjugated Polymer as an Interconnecting Layer. Advanced Materials, 2016, 28, 4817-4823.	11.1	156
22	Selfâ€Assembled 2D Perovskite Layers for Efficient Printable Solar Cells. Advanced Energy Materials, 2019, 9, 1803258.	10.2	149
23	Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 12201-12225.	5.2	149
24	A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10, 6837-6843.	2.8	146
25	An Electrically Modulated Singleâ€Color/Dualâ€Color Imaging Photodetector. Advanced Materials, 2020, 32, e1907257.	11.1	145
26	A pentacyclic aromatic lactam building block for efficient polymer solar cells. Energy and Environmental Science, 2013, 6, 3224.	15.6	143
27	Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Science Bulletin, 2019, 64, 1573-1576.	4.3	140
28	Carbon–Oxygenâ€Bridged Ladderâ€Type Building Blocks for Highly Efficient Nonfullerene Acceptors. Advanced Materials, 2019, 31, e1804790.	11.1	139
29	Leadâ€Free Perovskite Photodetectors: Progress, Challenges, and Opportunities. Advanced Materials, 2021, 33, e2006691.	11.1	138
30	Photoelectric Synaptic Plasticity Realized by 2D Perovskite. Advanced Functional Materials, 2019, 29, 1902538.	7.8	132
31	Thermodynamic Properties and Molecular Packing Explain Performance and Processing Procedures of Three D18:NFA Organic Solar Cells. Advanced Materials, 2020, 32, e2005386.	11.1	130
32	Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells Over 17% Efficiency. Advanced Materials, 2020, 32, e2002344.	11.1	127
33	Strategies for Improving the Stability of Tinâ€Based Perovskite (ASnX ₃) Solar Cells. Advanced Science, 2020, 7, 1903540.	5.6	123
34	18.69% PCE from organic solar cells. Journal of Semiconductors, 2021, 42, 060502.	2.0	121
35	Full Defects Passivation Enables 21% Efficiency Perovskite Solar Cells Operating in Air. Advanced Energy Materials, 2020, 10, 2001958.	10.2	117
36	D18, an eximious solar polymer!. Journal of Semiconductors, 2021, 42, 010502.	2.0	117

#	Article	IF	CITATIONS
37	Charge-transport layer engineering in perovskite solar cells. Science Bulletin, 2020, 65, 1237-1241.	4.3	115
38	CsPb(I Br1â^')3 solar cells. Science Bulletin, 2019, 64, 1532-1539.	4.3	114
39	Ruddlesden–Popper 2D Component to Stabilize γ sPbl ₃ Perovskite Phase for Stable and Efficient Photovoltaics. Advanced Energy Materials, 2019, 9, 1902529.	10.2	111
40	Interfacial charge behavior modulation in 2D/3D perovskite heterostructure for potential high-performance solar cells. Nano Energy, 2019, 59, 715-720.	8.2	108
41	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	5.2	107
42	Advances in perovskite photodetectors. InformaÄnÃ-Materiály, 2020, 2, 1247-1256.	8.5	107
43	Bulk heterojunction gifts bismuth-based lead-free perovskite solar cells with record efficiency. Nano Energy, 2020, 68, 104362.	8.2	102
44	Unveiling the Effects of Hydrolysisâ€Ðerived DMAI/DMAPbI <i>_x</i> Intermediate Compound on the Performance of CsPbI ₃ Solar Cells. Advanced Science, 2020, 7, 1902868.	5.6	97
45	Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm. Journal of Materials Chemistry A, 2015, 3, 9063-9066.	5.2	96
46	Development of isomer-free fullerene bisadducts for efficient polymer solar cells. Energy and Environmental Science, 2016, 9, 2114-2121.	15.6	95
47	Visible to Nearâ€Infrared Photodetection Based on Ternary Organic Heterojunctions. Advanced Functional Materials, 2019, 29, 1808948.	7.8	95
48	Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy, 2020, 71, 104634.	8.2	95
49	A Highâ€Performance D–A Copolymer Based on Dithieno[3,2â€b:2′,3′â€d]Pyridinâ€5(4H)â€One Unit C Fullerene and Nonfullerene Acceptors in Solar Cells. Advanced Energy Materials, 2017, 7, 1602509.	ompatible 10.2	e with 92
50	Perovskite-based tandem solar cells. Science Bulletin, 2021, 66, 621-636.	4.3	91
51	Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chemical Engineering Journal, 2020, 398, 125594.	6.6	85
52	A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Science Bulletin, 2017, 62, 1331-1336.	4.3	84
53	Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%. Chemical Engineering Journal, 2021, 410, 128328.	6.6	83
54	A Solutionâ€Processed Highâ€Performance Phototransistor based on a Perovskite Composite with Chemically Modified Graphenes. Advanced Materials, 2017, 29, 1606175.	11.1	80

#	Article	IF	CITATIONS
55	Simultaneously improved efficiency and average visible transmittance of semitransparent polymer solar cells with two ultra-narrow bandgap nonfullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 21485-21492.	5.2	80
56	Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells. Nano Energy, 2020, 72, 104673.	8.2	78
57	Organic Photodetectors: Materials, Structures, and Challenges. Solar Rrl, 2020, 4, 2000139.	3.1	78
58	Pushing Fullerene Absorption into the Nearâ€IR Region by Conjugately Fusing Oligothiophenes. Angewandte Chemie - International Edition, 2012, 51, 9038-9041.	7.2	77
59	Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73, 104757.	8.2	77
60	Largeâ€Area Bladeâ€Coated Solar Cells: Advances and Perspectives. Advanced Energy Materials, 2021, 11, 2100378.	10.2	77
61	Cesium Lead Mixed-Halide Perovskites for Low-Energy Loss Solar Cells with Efficiency Beyond 17%. Chemistry of Materials, 2019, 31, 6231-6238.	3.2	76
62	A 2.16ÂeV bandgap polymer donor gives 16% power conversion efficiency. Science Bulletin, 2020, 65, 179-181.	4.3	75
63	A universal method for constructing high efficiency organic solar cells with stacked structures. Energy and Environmental Science, 2021, 14, 2314-2321.	15.6	75
64	Additiveâ€Free Organic Solar Cells with Power Conversion Efficiency over 10%. Advanced Energy Materials, 2017, 7, 1602663.	10.2	72
65	Ionic liquid reducing energy loss and stabilizing CsPbl2Br solar cells. Nano Energy, 2021, 81, 105631.	8.2	71
66	Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications. SusMat, 2021, 1, 324-344.	7.8	70
67	A lactam building block for efficient polymer solar cells. Chemical Communications, 2015, 51, 11830-11833.	2.2	69
68	Leadâ€free Perovskite Materials (NH ₄) ₃ Sb ₂ I _x Br _{9â^'<i>x</i>} . Angewandte Chemie, 2017, 129, 6628-6632.	1.6	69
69	Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Materials Horizons, 2020, 7, 2276-2291.	6.4	66
70	The new era for organic solar cells: non-fullerene small molecular acceptors. Science Bulletin, 2020, 65, 1231-1233.	4.3	65
71	Dropâ€Casting to Make Efficient Perovskite Solar Cells under High Humidity. Angewandte Chemie - International Edition, 2021, 60, 11242-11246.	7.2	64
72	High-performance inverted PThTPTI:PC71BM solar cells. Nano Energy, 2015, 15, 125-134.	8.2	63

#	Article	IF	CITATIONS
73	Filterâ€Free Band‧elective Organic Photodetectors. Advanced Optical Materials, 2020, 8, 2001388.	3.6	63
74	Potential applications for perovskite solar cells in space. Nano Energy, 2020, 76, 105019.	8.2	63
75	Highâ€Performance Thermally Stable Organic Phototransistors Based on PSeTPTI/PC ₆₁ BM for Visible and Ultraviolet Photodetection. Advanced Functional Materials, 2015, 25, 3138-3146.	7.8	62
76	Elevated Stability and Efficiency of Solar Cells via Ordered Alloy Co-Acceptors. ACS Energy Letters, 2019, 4, 1106-1114.	8.8	62
77	CsPbI2.25Br0.75 solar cells with 15.9% efficiency. Science Bulletin, 2019, 64, 507-510.	4.3	62
78	Over 16% efficiency from thick-film organic solar cells. Science Bulletin, 2020, 65, 1979-1982.	4.3	62
79	Exploring the Charge Dynamics and Energy Loss in Ternary Organic Solar Cells with a Fill Factor Exceeding 80%. Advanced Energy Materials, 2021, 11, 2101338.	10.2	62
80	Metal oxide alternatives for efficient electron transport in perovskite solar cells: beyond TiO ₂ and SnO ₂ . Journal of Materials Chemistry A, 2020, 8, 19768-19787.	5.2	60
81	The new era for organic solar cells: polymer donors. Science Bulletin, 2020, 65, 1422-1424.	4.3	57
82	Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI2Br solar cells. Nano Energy, 2020, 71, 104604.	8.2	56
83	NIR to Visible Light Upconversion Devices Comprising an NIR Charge Generation Layer and a Perovskite Emitter. Advanced Optical Materials, 2018, 6, 1801084.	3.6	55
84	5H-dithieno[3,2-b:2′,3′-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Science Bulletin, 2019, 64, 1655-1657.	4.3	55
85	2D perovskite microsheets for high-performance photodetectors. Journal of Materials Chemistry C, 2019, 7, 5353-5358.	2.7	54
86	The humidity-insensitive fabrication of efficient CsPbl ₃ solar cells in ambient air. Journal of Materials Chemistry A, 2019, 7, 26776-26784.	5.2	54
87	Efficient All-Inorganic Perovskite Light-Emitting Diodes with Improved Operation Stability. ACS Applied Materials & Interfaces, 2020, 12, 18084-18090.	4.0	54
88	Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 2020, 74, 104846.	8.2	54
89	Pseudohalide (SCN ^{â^'})-doped CsPbI ₃ for high-performance solar cells. Journal of Materials Chemistry C, 2019, 7, 13736-13742.	2.7	53
90	Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Science Bulletin, 2019, 64, 1743-1746.	4.3	51

#	Article	IF	CITATIONS
91	Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells. Coordination Chemistry Reviews, 2020, 420, 213408.	9.5	51
92	Correlating alkyl chain length with defect passivation efficacy in perovskite solar cells. Chemical Communications, 2020, 56, 5006-5009.	2.2	51
93	The new era for organic solar cells: polymer acceptors. Science Bulletin, 2020, 65, 1508-1510.	4.3	50
94	Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. Journal of Energy Chemistry, 2021, 55, 265-271.	7.1	50
95	Hot-Casting Large-Grain Perovskite Film for Efficient Solar Cells: Film Formation and Device Performance. Nano-Micro Letters, 2020, 12, 156.	14.4	47
96	Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy, 2020, 75, 104929.	8.2	47
97	Vacancy defect modulation in hot-casted NiO film for efficient inverted planar perovskite solar cells. Journal of Energy Chemistry, 2020, 48, 426-434.	7.1	44
98	Creating a Dualâ€Functional 2D Perovskite Layer at the Interface to Enhance the Performance of Flexible Perovskite Solar Cells. Small, 2021, 17, e2102368.	5.2	44
99	Induced J-aggregation in acceptor alloy enhances photocurrent. Science Bulletin, 2019, 64, 1083-1086.	4.3	43
100	Correlating the electron-donating core structure with morphology and performance of carbon oxygen-bridged ladder-type non-fullerene acceptor based organic solar cells. Nano Energy, 2019, 61, 318-326.	8.2	43
101	Polymerizing small molecular acceptors for efficient allâ€polymer solar cells. InformaÄnÃ-Materiály, 2022, 4, .	8.5	42
102	A carbon–oxygen-bridged hexacyclic ladder-type building block for low-bandgap nonfullerene acceptors. Materials Chemistry Frontiers, 2018, 2, 700-703.	3.2	41
103	Indoor organic photovoltaics. Science Bulletin, 2020, 65, 2040-2042.	4.3	41
104	All-perovskite tandem structures shed light on thin-film photovoltaics. Science Bulletin, 2020, 65, 1144-1146.	4.3	41
105	Decreasing energy loss and optimizing band alignment for high performance CsPbl ₃ solar cells through guanidine hydrobromide post-treatment. Journal of Materials Chemistry A, 2020, 8, 10346-10353.	5.2	40
106	Overcoming Interfacial Losses in Solutionâ€Processed Organic Multiâ€Junction Solar Cells. Advanced Energy Materials, 2017, 7, 1601959.	10.2	39
107	Effects of Oxygen Atoms Introduced at Different Positions of Non-Fullerene Acceptors in the Performance of Organic Solar Cells with Poly(3-hexylthiophene). ACS Applied Materials & Interfaces, 2020, 12, 1094-1102.	4.0	39
108	Importance of terminated groups in 9,9-bis(4-methoxyphenyl)-substituted fluorene-based hole transport materials for highly efficient organic–inorganic hybrid and all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 10319-10324.	5.2	38

#	Article	IF	CITATIONS
109	Highly Efficient Perovskite Solar Cells Processed Under Ambient Conditions Using In Situ Substrateâ€Heatingâ€Assisted Deposition. Solar Rrl, 2019, 3, 1800318.	3.1	37
110	Suppressing the formation of tin vacancy yields efficient lead-free perovskite solar cells. Nano Energy, 2022, 99, 107416.	8.2	37
111	Suppressing the Excessive Solvated Phase for Dion–Jacobson Perovskites with Improved Crystallinity and Vertical Orientation. Solar Rrl, 2020, 4, 2000371.	3.1	36
112	High-power bifacial perovskite solar cells with shelf life of over 2000Âh. Science Bulletin, 2020, 65, 607-610.	4.3	36
113	All-polymer solar cells. Journal of Semiconductors, 2021, 42, 080301.	2.0	36
114	A Thieno[3,2â€c]Isoquinolinâ€5(4H)â€One Building Block for Efficient Thickâ€Film Solar Cells. Advanced Energy Materials, 2018, 8, 1800397.	10.2	35
115	Fused-ring bislactone building blocks for polymer donors. Science Bulletin, 2020, 65, 1792-1795.	4.3	35
116	Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: Experimental and theoretical evidence. EcoMat, 2022, 4, .	6.8	35
117	Hexacyclic lactam building blocks for highly efficient polymer solar cells. Chemical Communications, 2015, 51, 12122-12125.	2.2	34
118	A heptacyclic carbon–oxygen-bridged ladder-type building block for A–D–A acceptors. Materials Chemistry Frontiers, 2018, 2, 1716-1719.	3.2	34
119	Insights into Ultrafast Carrier Dynamics in Perovskite Thin Films and Solar Cells. ACS Photonics, 2020, 7, 1893-1907.	3.2	34
120	Large-area perovskite solar cells. Science Bulletin, 2020, 65, 872-875.	4.3	34
121	Construct efficient CsPbI2Br solar cells by minimizing the open-circuit voltage loss through controlling the peripheral substituents of hole-transport materials. Chemical Engineering Journal, 2021, 425, 131675.	6.6	34
122	Multiple conformation locks gift polymer donor high efficiency. Nano Energy, 2020, 77, 105161.	8.2	33
123	Developing D–̀–D hole-transport materials for perovskite solar cells: the effect of the π-bridge on device performance. Materials Chemistry Frontiers, 2021, 5, 876-884.	3.2	33
124	Comparative analysis of burn-in photo-degradation in non-fullerene COi8DFIC acceptor based high-efficiency ternary organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1085-1096.	3.2	31
125	Bladeâ€coating Perovskite Films with Diverse Compositions for Efficient Photovoltaics. Energy and Environmental Materials, 2021, 4, 277-283.	7.3	31
126	Inorganic perovskite/organic tandem solar cells with efficiency over 20%. Journal of Semiconductors, 2021, 42, 020501.	2.0	31

#	Article	IF	CITATIONS
127	Highly Crystalline Near-Infrared Acceptor Enabling Simultaneous Efficiency and Photostability Boosting in High-Performance Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 48095-48102.	4.0	30
128	Flexible Perovskite Solar Modules with Functional Layers Fully Vacuum Deposited. Solar Rrl, 2020, 4, 2000292.	3.1	29
129	Ion migration in perovskite solar cells. Journal of Semiconductors, 2021, 42, 010201.	2.0	29
130	Semitransparent perovskite solar cells for smart windows. Science Bulletin, 2020, 65, 980-982.	4.3	28
131	Toward improved stability of nonfullerene organic solar cells: Impact of interlayer and builtâ€in potential. EcoMat, 2021, 3, e12134.	6.8	28
132	Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. Journal of Semiconductors, 2021, 42, 030502.	2.0	27
133	Ambient air-processed Cu2ZnSn(S,Se)4 solar cells with over 12% efficiency. Science Bulletin, 2021, 66, 880-883.	4.3	27
134	Modifying SnO ₂ with Polyacrylamide to Enhance the Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34143-34150.	4.0	27
135	Functionality of Nonâ€Fullerene Electron Acceptors in Ternary Organic Solar Cells. Solar Rrl, 2019, 3, 1900322.	3.1	26
136	Intermediates transformation for efficient perovskite solar cells. Journal of Energy Chemistry, 2021, 52, 102-114.	7.1	26
137	Self-spreading produces highly efficient perovskite solar cells. Nano Energy, 2021, 90, 106509.	8.2	26
138	Bilayer Heterostructured PThTPTI/WS2 Photodetectors with High Thermal Stability in Ambient Environment. ACS Applied Materials & amp; Interfaces, 2016, 8, 33043-33050.	4.0	25
139	Rubidium Ions Enhanced Crystallinity for Ruddlesden–Popper Perovskites. Advanced Science, 2020, 7, 2002445.	5.6	25
140	A pentacyclic building block containing an azepine-2,7-dione moiety for polymer solar cells. Polymer Chemistry, 2016, 7, 2329-2332.	1.9	24
141	A low-temperature solution-processed copper antimony iodide rudorffite for solar cells. Science China Materials, 2019, 62, 54-58.	3.5	22
142	Enhanced efficiency and stability of nonfullerene ternary polymer solar cells based on a spontaneously assembled active layer: the role of a high mobility small molecular electron acceptor. Journal of Materials Chemistry C, 2020, 8, 6196-6202.	2.7	22
143	Over 1 cm ² flexible organic solar cells. Journal of Semiconductors, 2021, 42, 050301.	2.0	22
144	Bananaâ€shaped electron acceptors with an electronâ€rich core fragment and 3D packing capability. , 2023, 5, .		22

#	Article	IF	CITATIONS
145	A hexacyclic ladder-type building block for high-performance D–A copolymers. Journal of Materials Chemistry A, 2015, 3, 24211-24214.	5.2	21
146	CsAg ₂ Sb ₂ I ₉ solar cells. Inorganic Chemistry Frontiers, 2018, 5, 1690-1693.	3.0	21
147	Alkoxythiophene and alkylthiothiophene π-bridges enhance the performance of A–D–A electron acceptors. Materials Chemistry Frontiers, 2019, 3, 492-495.	3.2	21
148	Fused-ring phenazine building blocks for efficient copolymer donors. Materials Chemistry Frontiers, 2020, 4, 1454-1458.	3.2	21
149	Toward stable and efficient Sn-containing perovskite solar cells. Science Bulletin, 2020, 65, 786-790.	4.3	21
150	Adjusting energy level alignment between HTL and CsPbI ₂ Br to improve solar cell efficiency. Journal of Semiconductors, 2021, 42, 030501.	2.0	21
151	Enhancing the efficiency of PTB7-Th:CO <i>i</i> 8DFIC-based ternary solar cells with versatile third components. Applied Physics Reviews, 2019, 6, .	5.5	20
152	Drop asting to Make Efficient Perovskite Solar Cells under High Humidity. Angewandte Chemie, 2021, 133, 11342-11346.	1.6	20
153	A heptacyclic acceptor unit developed for D–A copolymers used in polymer solar cells. Polymer Chemistry, 2016, 7, 1027-1030.	1.9	19
154	CsPbl _{2.69} Br _{0.31} solar cells from low-temperature fabrication. Materials Chemistry Frontiers, 2019, 3, 1139-1142.	3.2	19
155	Manipulate energy transport via fluorinated spacers towards record-efficiency 2D Dion-Jacobson CsPbI3 solar cells. Science Bulletin, 2022, 67, 1352-1361.	4.3	19
156	High-performance wide-bandgap copolymers with dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyridin-5(4 <i>H</i>)-one units. Materials Chemistry Frontiers, 2019, 3, 399-402.	3.2	18
157	Encapsulation for perovskite solar cells. Science Bulletin, 2021, 66, 100-102.	4.3	18
158	An efficient medium-bandgap nonfullerene acceptor for organic solar cells. Journal of Materials Chemistry A, 2020, 8, 8857-8861.	5.2	17
159	Strategies from small-area to scalable fabrication for perovskite solar cells. Journal of Energy Chemistry, 2021, 57, 567-586.	7.1	17
160	Defect engineering on all-inorganic perovskite solar cells for high efficiency. Journal of Semiconductors, 2021, 42, 050203.	2.0	17
161	Efficient MAPbI ₃ solar cells made via drop-coating at room temperature. Journal of Semiconductors, 2021, 42, 072201.	2.0	17
162	Inhibiting octahedral tilting for stable <scp>CsPbI₂Br</scp> solar cells. InformaÄnÃ- Materiály, 2022, 4, .	8.5	17

#	Article	IF	CITATIONS
163	Engineering of the alkyl chain branching point on a lactone polymer donor yields 17.81% efficiency. Journal of Materials Chemistry A, 2022, 10, 3314-3320.	5.2	17
164	Using Cyclopenta[2,1â€ <i>b</i> :3,4â€ <i>c′</i>]dithiopheneâ€4â€one as a Building Block for Lowâ€Bandgap Conjugated Copolymers Applied in Solar Cells. Macromolecular Rapid Communications, 2012, 33, 1574-1579.	2.0	16
165	Understanding the side-chain effects on A–D–A acceptors: in-plane and out-of-plane. Materials Chemistry Frontiers, 2018, 2, 1563-1567.	3.2	16
166	Low-dimensionality perovskites yield high electroluminescence. Science Bulletin, 2020, 65, 1057-1060.	4.3	15
167	Polymer acceptors for all-polymer solar cells. Journal of Semiconductors, 2021, 42, 080202.	2.0	15
168	Tetrazole modulated perovskite films for efficient solar cells with improved moisture stability. Chemical Engineering Journal, 2021, 420, 127579.	6.6	14
169	Post-sulphuration enhances the performance of a lactone polymer donor. Journal of Semiconductors, 2021, 42, 070501.	2.0	14
170	A chlorinated lactone polymer donor featuring high performance and low cost. Journal of Semiconductors, 2022, 43, 050501.	2.0	14
171	D–A copolymers containing lactam moieties for polymer solar cells. Polymer Chemistry, 2015, 6, 7373-7376.	1.9	13
172	Amines modulation and passivation yields record perovskite optoelectronic devices. Journal of Energy Chemistry, 2021, 53, 419-421.	7.1	13
173	A large-bandgap copolymer donor for efficient ternary organic solar cells. Materials Chemistry Frontiers, 2021, 5, 6139-6144.	3.2	13
174	Drop-coating produces efficient CsPbI ₂ Br solar cells. Journal of Semiconductors, 2021, 42, 050502.	2.0	13
175	Alkalis-doping of mixed tin-lead perovskites for efficient near-infrared light-emitting diodes. Science Bulletin, 2022, 67, 54-60.	4.3	13
176	Perovskite crystallization. Journal of Semiconductors, 2021, 42, 080203.	2.0	13
177	Advances in perovskite quantum-dot solar cells. Journal of Energy Chemistry, 2021, 52, 351-353.	7.1	13
178	Passivation with crosslinkable diamine yields 0.1ÂV non-radiative Voc loss in inverted perovskite solar cells. Science Bulletin, 2021, 66, 417-420.	4.3	12
179	F-containing cations improve the performance of perovskite solar cells. Journal of Semiconductors, 2022, 43, 010202.	2.0	12
180	The effect of fluorination on the photovoltaic performance of the D–A copolymers containing naphtho[2,3-c]thiophene-4,9-dione and bithiophene moieties. Polymer Chemistry, 2016, 7, 4993-4997.	1.9	11

#	Article	IF	CITATIONS
181	Single-crystal perovskite devices. Science Bulletin, 2021, 66, 214-218.	4.3	11
182	Dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels. Journal of Semiconductors, 2021, 42, 060501.	2.0	10
183	A D–A copolymer donor containing an alkylthio-substituted thieno[3,2-b]thiophene unit. New Journal of Chemistry, 2017, 41, 2895-2898.	1.4	9
184	Solution-processable n-type organic thermoelectric materials. Science Bulletin, 2020, 65, 1862-1864.	4.3	9
185	Inorganic electron-transport materials in perovskite solar cells. Journal of Semiconductors, 2022, 43, 040201.	2.0	9
186	A Novel Annealingâ€Free Amorphous Inorganic Metal Oxyhydroxide Cathode Interlayer for Efficient and Stable Inverted Perovskite Solar Cells. Solar Rrl, 2021, 5, .	3.1	8
187	Frontier applications of perovskites beyond photovoltaics. Journal of Semiconductors, 2022, 43, 040203.	2.0	7
188	A wide-bandgap copolymer donor based on a phenanthridin-6(5 <i>H</i>)-one unit. Materials Chemistry Frontiers, 2019, 3, 2686-2689.	3.2	6
189	Fast Wetting of a Fullerene Capping Layer Improves the Efficiency and Scalability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37265-37274.	4.0	6
190	A wide-bandgap copolymer donor with a 5-methyl-4H-dithieno[3,2-e:2',3'-g]isoindole-4,6(5H)-dione unit. Journal of Semiconductors, 2021, 42, 100502.	2.0	6
191	Effect of Isomeric Structures on Photovoltaic Performance of D–A Copolymers. Macromolecular Rapid Communications, 2017, 38, 1700074.	2.0	5
192	Light Management via Tuning the Fluorineâ€Doped Tin Oxide Glass Hazeâ€Drives Highâ€Efficiency CsPbI 3 Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900602.	0.8	5
193	Beyond Metal Oxides: Introducing Lowâ€Temperature Solutionâ€Processed Ultrathin Layered Double Hydroxide Nanosheets into Polymer Solar Cells Toward Improved Electron Transport. Solar Rrl, 2019, 3, 1800299.	3.1	5
194	Lock-up function of fluorine enhances photovoltaic performance of polythiophene. Science China Chemistry, 2017, 60, 251-256.	4.2	4
195	A Wide-Band Gap Copolymer Donor for Efficient Fullerene-Free Solar Cells. ACS Omega, 2019, 4, 14800-14804.	1.6	4
196	Efficient wide-bandgap copolymer donors with reduced synthesis cost. Journal of Materials Chemistry C, 2021, 9, 16187-16191.	2.7	4
197	Using fluorinated and crosslinkable fullerene derivatives to improve the stability of perovskite solar cells. Journal of Semiconductors, 2021, 42, 120201.	2.0	4
198	ADA′DA small molecule acceptors with non-fully-fused core units. Materials Chemistry Frontiers, 2022, 6, 802-806.	3.2	3

#	Article	IF	CITATIONS
199	Improving Photovoltaic Performance of a Fusedâ€Ring Azepinedione Copolymer via a D–A–A Design. Macromolecular Rapid Communications, 2018, 39, e1700882.	2.0	2
200	The integration structure enhances performance of perovskite solar cells. Science Bulletin, 2021, 66, 310-313.	4.3	2
201	Solution-processed tandem organic solar cells. Journal of Semiconductors, 2021, 42, 110201.	2.0	2
202	11.39% efficiency Cu ₂ ZnSn(S,Se) ₄ solar cells from scrap brass. SusMat, 2022, 2, 206-211.	7.8	2
203	Low-bandgap small molecule acceptors with asymmetric side chains. Materials Chemistry Frontiers, 2022, 6, 1858-1864.	3.2	2
204	A facilely synthesized lactam acceptor unit for high-performance polymer donors. RSC Advances, 2017, 7, 3439-3442.	1.7	1