JérÃ'me Pelloux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6879355/publications.pdf Version: 2024-02-01

ΙΔΩρΔ΄ΜΕ ΡΕΙΤΟΠΧ

#	Article	IF	CITATIONS
1	In situ ESEM using 3-D printed and adapted accessories to observe living plantlets and their interaction with enzyme and fungus. Micron, 2022, 153, 103185.	2.2	1
2	New insights into the specificity and processivity of two novel pectinases from Verticillium dahliae. International Journal of Biological Macromolecules, 2021, 176, 165-176.	7.5	15
3	Characterization of a novel strain of Aspergillus aculeatinus: From rhamnogalacturonan type I pectin degradation to improvement of fruit juice filtration. Carbohydrate Polymers, 2021, 262, 117943.	10.2	9
4	Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydrate Polymers, 2020, 248, 116752.	10.2	17
5	The exogenous application of AtPGLR, an <i>endo</i> â€polygalacturonase, triggers pollen tube burst and repair. Plant Journal, 2020, 103, 617-633.	5.7	28
6	Pectin Degrading Enzymes. , 2020, , 37-60.		9
7	Oligogalacturonide production upon <i>Arabidopsis thaliana</i> – <i>Botrytis cinerea</i> interaction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19743-19752.	7.1	100
8	Lactose derivatives as potential inhibitors of pectin methylesterases. International Journal of Biological Macromolecules, 2019, 132, 1140-1146.	7.5	4
9	New insights into diet breadth of polyphagous and oligophagous aphids on two <i>Arabidopsis</i> ecotypes. Insect Science, 2019, 26, 753-769.	3.0	6
10	The pectinases from Sphenophorus levis: Potential for biotechnological applications. International Journal of Biological Macromolecules, 2018, 112, 499-508.	7.5	14
11	Evidence for the Regulation of Gynoecium Morphogenesis by <i>ETTIN</i> via Cell Wall Dynamics. Plant Physiology, 2018, 178, 1222-1232.	4.8	25
12	Plant pectin acetylesterase structure and function: new insights from bioinformatic analysis. BMC Genomics, 2017, 18, 456.	2.8	60
13	Combined Experimental and Computational Approaches Reveal Distinct pH Dependence of Pectin Methylesterase Inhibitors. Plant Physiology, 2017, 173, 1075-1093.	4.8	48
14	NMRâ€based Metabolomics to Study the Coldâ€acclimation Strategy of Two <i>Miscanthus</i> Genotypes. Phytochemical Analysis, 2017, 28, 58-67.	2.4	21
15	Structural and dynamical characterization of the pH-dependence of the pectin methylesterase–pectin methylesterase inhibitor complex. Journal of Biological Chemistry, 2017, 292, 21538-21547.	3.4	19
16	AtPME3, a ubiquitous cell wall pectin methylesterase of Arabidopsis thaliana, alters the metabolism of cruciferin seed storage proteins during post-germinative growth of seedlings. Journal of Experimental Botany, 2017, 68, 1083-1095.	4.8	17
17	Connecting Homogalacturonan-Type Pectin Remodeling to Acid Growth. Trends in Plant Science, 2017, 22, 20-29.	8.8	189
18	The subtilisin-like protease SBT3 contributes to insect resistance in tomato. Journal of Experimental Botany. 2016, 67, 4325-4338.	4.8	35

JéRôME PELLOUX

#	Article	IF	CITATIONS
19	Tuning of Pectin Methylesterification. Journal of Biological Chemistry, 2015, 290, 23320-23335.	3.4	52
20	Cell Wall Metabolism in Response to Abiotic Stress. Plants, 2015, 4, 112-166.	3.5	883
21	PECTIN METHYLESTERASE48 Is Involved in Arabidopsis Pollen Grain Germination Â. Plant Physiology, 2015, 167, 367-380.	4.8	97
22	Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta, 2015, 242, 791-811.	3.2	199
23	Arabidopsis PME17 Activity can be Controlled by Pectin Methylesterase Inhibitor4. Plant Signaling and Behavior, 2015, 10, e983351.	2.4	42
24	Substrate specificity of plant and fungi pectin methylesterases: Identification of novel inhibitors of PMEs. International Journal of Biological Macromolecules, 2015, 81, 681-691.	7.5	15
25	Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5, a subtilisin-like serine protease. Annals of Botany, 2014, 114, 1161-1175.	2.9	79
26	Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. Journal of Experimental Botany, 2014, 65, 5125-5160.	4.8	242
27	Kiwi fruit PMEI inhibits PME activity, modulates root elongation and induces pollen tube burst in Arabidopsis thaliana. Plant Growth Regulation, 2014, 74, 285-297.	3.4	20
28	The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. Annals of Botany, 2014, 114, 1177-1188.	2.9	52
29	Structural alteration of cell wall pectins accompanies pea development in response to cold. Phytochemistry, 2014, 104, 37-47.	2.9	75
30	Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. Phytochemistry, 2013, 85, 51-61.	2.9	80
31	Analysis of LuPME3, a pectin methylesterase from Linum usitatissimum, revealed a variability in PME proteolytic maturation. Plant Signaling and Behavior, 2012, 7, 59-61.	2.4	10
32	Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in <i>Arabidopsis thaliana</i> . New Phytologist, 2011, 192, 114-126.	7.3	67
33	Major changes in the cell wall during silique development in Arabidopsis thaliana. Phytochemistry, 2011, 72, 59-67.	2.9	33
34	The transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in <i>Arabidopsis</i> . Development (Cambridge), 2011, 138, 4733-4741.	2.5	68
35	A role for pectin deâ€methylesterification in a developmentally regulated growth acceleration in darkâ€grown Arabidopsis hypocotyls. New Phytologist, 2010, 188, 726-739.	7.3	147
36	Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany, 2009, 60, 487-493.	4.8	481

Jérôme Pelloux

#	Article	IF	CITATIONS
37	Homogalacturonan Methyl-Esterification and Plant Development. Molecular Plant, 2009, 2, 851-860.	8.3	365
38	The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcriptionâ€polymerase chain reaction (RTâ€PCR) analysis in plants. Plant Biotechnology Journal, 2008, 6, 609-618.	8.3	613
39	Arabidopsis Phyllotaxis Is Controlled by the Methyl-Esterification Status of Cell-Wall Pectins. Current Biology, 2008, 18, 1943-1948.	3.9	302
40	Towards a Systematic Validation of References in Real-Time RT-PCR. Plant Cell, 2008, 20, 1734-1735.	6.6	186
41	New insights into pectin methylesterase structure and function. Trends in Plant Science, 2007, 12, 267-277.	8.8	676
42	Symplastic connection is required for bud outgrowth following dormancy in potato (Solanum) Tj ETQq0 0 0 rg	BT /Qverloo	2k 10 Tf 50 54

43	Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta, 2006, 224, 782-791.	3.2	131
44	The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature, 2005, 434, 404-408.	27.8	490
45	Calcium at the Crossroads of Signaling. Plant Cell, 2002, 14, S401-S417.	6.6	1,076
46	Purification and characterisation of a novel starch synthase selective for uridine 5′-diphosphate glucose from the red alga Gracilaria tenuistipitata. Planta, 1999, 209, 143-152.	3.2	40