
Sangsu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6878923/publications.pdf Version: 2024-02-01

SANCSULEE

#	Article	IF	CITATIONS
1	Dibenzoheptazethrene Isomers with Different Biradical Characters: An Exercise of Clar's Aromatic Sextet Rule in Singlet Biradicaloids. Journal of the American Chemical Society, 2013, 135, 18229-18236.	13.7	167
2	Azabuckybowl-Based Molecular Tweezers as C ₆₀ and C ₇₀ Receptors. Journal of the American Chemical Society, 2018, 140, 6336-6342.	13.7	104
3	Toward Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity. Journal of the American Chemical Society, 2016, 138, 1065-1077.	13.7	103
4	A Diradical Approach towards BODIPYâ€Based Dyes with Intense Nearâ€Infrared Absorption around <i>λ</i> =1100â€nm. Angewandte Chemie - International Edition, 2016, 55, 2815-2819.	13.8	100
5	Tetracyanoquaterrylene and Tetracyanohexarylenequinodimethanes with Tunable Ground States and Strong Nearâ€Infrared Absorption. Angewandte Chemie - International Edition, 2013, 52, 8561-8565.	13.8	94
6	Push–Pull Type Oligo(<i>N</i> -annulated perylene)quinodimethanes: Chain Length and Solvent-Dependent Ground States and Physical Properties. Journal of the American Chemical Society, 2015, 137, 8572-8583.	13.7	93
7	Oxidative Fusion Reactions of mesoâ€(Diarylamino)porphyrins. Angewandte Chemie - International Edition, 2013, 52, 9728-9732.	13.8	84
8	Synthesis of Highly Twisted and Fully π-Conjugated Porphyrinic Oligomers. Journal of the American Chemical Society, 2015, 137, 142-145.	13.7	75
9	Bicyclic Baird-type aromaticity. Nature Chemistry, 2017, 9, 1243-1248.	13.6	71
10	<i>meso–meso</i> Linked Porphyrin–[26]Hexaphyrin–Porphyrin Hybrid Arrays and Their Triply Linked Tapes Exhibiting Strong Absorption Bands in the NIR Region. Journal of the American Chemical Society, 2015, 137, 2097-2106.	13.7	64
11	Fluorenyl Based Macrocyclic Polyradicaloids. Journal of the American Chemical Society, 2017, 139, 13173-13183.	13.7	64
12	Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: syntheses, structures and chain length dependent physical properties. Chemical Science, 2014, 5, 4490-4503.	7.4	62
13	Porphyrins Fused with Strongly Electron-Donating 1,3-Dithiol-2-ylidene Moieties: Redox Control by Metal Cation Complexation and Anion Binding. Journal of the American Chemical Society, 2013, 135, 10852-10862.	13.7	58
14	Stable Ï€â€Radical from a Contracted Doubly N onfused Hexaphyrin by Double Palladium Metalation. Angewandte Chemie - International Edition, 2015, 54, 7323-7327.	13.8	53
15	Fused Corrole Dimers Interconvert between Nonaromatic and Aromatic States through Twoâ€Electron Redox Reactions. Angewandte Chemie - International Edition, 2015, 54, 3107-3111.	13.8	52
16	Phenalenyl-fused porphyrins with different ground states. Chemical Science, 2015, 6, 2427-2433.	7.4	50
17	Turning on the biradical state of tetracyano-perylene and quaterrylenequinodimethanes by incorporation of additional thiophene rings. Chemical Science, 2014, 5, 3072-3080.	7.4	48
18	<i>para</i> â€Quinodimethaneâ€Bridged Perylene Dimers and Pericondensed Quaterrylenes: The Effect of the Fusion Mode on the Ground States and Physical Properties. Chemistry - A European Journal, 2014, 20, 11410-11420.	3.3	46

Sangsu Lee

#	Article	IF	CITATIONS
19	Stable 3,6-Linked Fluorenyl Radical Oligomers with Intramolecular Antiferromagnetic Coupling and Polyradical Characters. Journal of the American Chemical Society, 2016, 138, 13048-13058.	13.7	44
20	Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure. Journal of Organic Chemistry, 2016, 81, 2911-2919.	3.2	43
21	Indolo[2,3-b]carbazoles with tunable ground states: how Clar's aromatic sextet determines the singlet biradical character. Chemical Science, 2014, 5, 4944-4952.	7.4	39
22	A <i>p</i> â€Quinodimethaneâ€Bridged Porphyrin Dimer. Chemistry - A European Journal, 2013, 19, 16814-16824.	3.3	38
23	Benzo-thia-fused [n]thienoacenequinodimethanes with small to moderate diradical characters: the role of pro-aromaticity versus anti-aromaticity. Chemical Science, 2016, 7, 3036-3046.	7.4	38
24	Multifaceted [36]octaphyrin(1.1.1.1.1.1.1): deprotonation-induced switching among nonaromatic, M¶bius aromatic, and H¼ckel antiaromatic species. Chemical Communications, 2016, 52, 6076-6078.	4.1	37
25	Regioselective phenylene-fusion reactions of Ni(<scp>ii</scp>)-porphyrins controlled by an electron-withdrawing meso-substituent. Chemical Science, 2016, 7, 4059-4066.	7.4	36
26	Electron Transfer from Triplet State of TIPS-Pentacene Generated by Singlet Fission Processes to CH ₃ NH ₃ PbI ₃ Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 884-888.	4.6	33
27	Benzonorcorrole Ni ^{II} Complexes: Enhancement of Paratropic Ring Current and Singlet Diradical Character by Benzoâ€Fusion. Angewandte Chemie - International Edition, 2018, 57, 2209-2213.	13.8	33
28	β-Octakis(methylthio)porphycenes: synthesis, characterisation and third order nonlinear optical studies. Chemical Communications, 2015, 51, 7705-7708.	4.1	31
29	Fused Corrole Dimers Interconvert between Nonaromatic and Aromatic States through Twoâ€Electron Redox Reactions. Angewandte Chemie, 2015, 127, 3150-3154.	2.0	30
30	Deprotonation induced formation of Möbius aromatic [32]heptaphyrins. Chemical Communications, 2014, 50, 548-550.	4.1	26
31	A Diradical Approach towards BODIPYâ€Based Dyes with Intense Nearâ€Infrared Absorption around <i>λ</i> =1100â€nm. Angewandte Chemie, 2016, 128, 2865-2869.	2.0	26
32	βâ€Octamethoxyâ€Substituted 22ï€ and 26ï€ Stretched Porphycenes: Synthesis, Characterization, Photodynamics, and Nonlinear Optical Studies. Chemistry - A European Journal, 2015, 21, 12129-12135.	3.3	22
33	Pro-aromatic bisphenaleno-thieno[3,2-b]thiophene versus anti-aromatic bisindeno-thieno[3,2-b]thiophene: different ground-state properties and applications in field-effect transistors. Chemical Communications, 2015, 51, 13178-13180.	4.1	21
34	Radical and Diradical Formation in Naphthalene Diimides through Simple Chemical Oxidation. ChemPhysChem, 2017, 18, 591-595.	2.1	20
35	Nâ€Annulated Peryleneâ€&ubstituted and Fused Porphyrin Dimers with Intense Nearâ€Infrared Oneâ€Photon and Twoâ€Photon Absorption. Chemistry - A European Journal, 2015, 21, 3708-3715.	3.3	18
36	Homoconjugation in diporphyrins: excitonic behaviors in singly and doubly linked Zn(ii)porphyrin dimers. Chemical Science, 2013, 4, 1756.	7.4	17

Sangsu Lee

#	Article	IF	CITATIONS
37	Excited-state electronic couplings in a 1,3-butadiyne-bridged Zn(<scp>ii</scp>)porphyrin dimer and trimer. Chemical Communications, 2014, 50, 2947-2950.	4.1	15
38	Symmetry-Dependent Intramolecular Charge Transfer Dynamics of Pyrene Derivatives Investigated by Two-Photon Excitation. Journal of Physical Chemistry A, 2016, 120, 9217-9223.	2.5	13
39	Benzonorcorrole Ni ^{II} Complexes: Enhancement of Paratropic Ring Current and Singlet Diradical Character by Benzoâ€Fusion. Angewandte Chemie, 2018, 130, 2231-2235.	2.0	13
40	Structural, Photophysical, and Magnetic Circular Dichroism Studies of Three Rigidified <i>meso</i> â€Pentafluorophenylâ€Substituted Hexaphyrin Analogues. Chemistry - A European Journal, 2017, 23, 6682-6692.	3.3	12
41	A very rapid electronic relaxation process in a highly conjugated Zn(ii)porphyrin–[26]hexaphyrin–Zn(ii)porphyrin hybrid tape. Physical Chemistry Chemical Physics, 2016, 18, 3244-3249.	2.8	5