Marc Postman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6876793/publications.pdf

Version: 2024-02-01

30070 27406 13,419 115 54 106 citations h-index g-index papers 6471 116 116 116 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sloan Digital Sky Survey: Early Data Release. Astronomical Journal, 2002, 123, 485-548.	4.7	2,003
2	The Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry. Astronomical Journal, 1996, 112, 1335.	4.7	881
3	Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample. Astronomical Journal, 2001, 122, 2267-2280.	4.7	856
4	THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal, Supplement Series, 2012, 199, 25.	7.7	659
5	The Luminosity Function of Galaxies in SDSS Commissioning Data. Astronomical Journal, 2001, 121, 2358-2380.	4.7	545
6	The Pan-STARRS1 Database and Data Products. Astrophysical Journal, Supplement Series, 2020, 251, 7.	7.7	348
7	The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies and Implications for the Space Density of the Most Massive Black Holes. Astrophysical Journal, 2007, 662, 808-834.	4.5	345
8	CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE <i>z</i> â%^11 GALAXY. Astrophysical Journal, 2013, 762, 32.	4.5	301
9	Strongâ€Lensing Analysis of A1689 from Deep Advanced Camera Images. Astrophysical Journal, 2005, 621, 53-88.	4.5	287
10	A magnified young galaxy from about 500 million years after the Big Bang. Nature, 2012, 489, 406-408.	27.8	273
11	The Palomar Distant Clusters Survey. I. The Cluster Catalog. Astronomical Journal, 1996, 111, 615.	4.7	269
12	The C4 Clustering Algorithm: Clusters of Galaxies in the Sloan Digital Sky Survey. Astronomical Journal, 2005, 130, 968-1001.	4.7	254
13	CLASH: WEAK-LENSING SHEAR-AND-MAGNIFICATION ANALYSIS OF 20 GALAXY CLUSTERS. Astrophysical Journal, 2014, 795, 163.	4.5	233
14	The motion of the Local Group with respect to the 15,000 kilometer per second Abell cluster inertial frame. Astrophysical Journal, 1994, 425, 418.	4.5	212
15	<i>HUBBLE SPACE TELESCOPE</i> COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES. Astrophysical Journal, 2015, 801, 44.	4.5	207
16	Brightest cluster galaxies as standard candles. Astrophysical Journal, 1995, 440, 28.	4.5	203
17	Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science, 2015, 347, 1123-1126.	12.6	202
18	Advanced Camera for Surveys Photometry of the Cluster RDCS 1252.9-2927: The Color-Magnitude Relation at $z=1.24$. Astrophysical Journal, 2003, 596, L143-L146.	4.5	195

#	Article	IF	Citations
19	Type Ia Supernova Distances at Redshift >1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate. Astrophysical Journal, 2018, 853, 126.	4. 5	168
20	Advanced camera for the Hubble Space Telescope. , 1998, , .		167
21	EVOLUTION OF THE COLOR-MAGNITUDE RELATION IN GALAXY CLUSTERS AT < i> z < /i> $\hat{a}^{-1}/4$ 1 FROM THE ACS INTERMEDIATE REDSHIFT CLUSTER SURVEY. Astrophysical Journal, 2009, 690, 42-68.	4.5	163
22	CLASH: JOINT ANALYSIS OF STRONG-LENSING, WEAK-LENSING SHEAR, AND MAGNIFICATION DATA FOR 20 GALAXY CLUSTERS*. Astrophysical Journal, 2016, 821, 116.	4. 5	160
23	Brightest Cluster Galaxy Profile Shapes. Astrophysical Journal, 1996, 465, 534.	4.5	160
24	[ITAL]Hubble Space Telescope[/ITAL] Imaging of Brightest Cluster Galaxies. Astronomical Journal, 2003, 125, 478-505.	4.7	128
25	The distribution of nearby rich clusters of galaxies. Astrophysical Journal, 1992, 384, 404.	4.5	126
26	The Cluster Mass Function from Early Sloan Digital Sky Survey Data: Cosmological Implications. Astrophysical Journal, 2003, 585, 182-190.	4. 5	121
27	A Merged Catalog of Clusters of Galaxies from Early Sloan Digital Sky Survey Data. Astrophysical Journal, Supplement Series, 2003, 148, 243-274.	7.7	119
28	BRIGHTEST CLUSTER GALAXIES AT THE PRESENT EPOCH. Astrophysical Journal, 2014, 797, 82.	4.5	116
29	The Spiderweb Galaxy: A Forming Massive Cluster Galaxy at $z\sim 2$. Astrophysical Journal, 2006, 650, L29-L32.	4.5	115
30	A PRECISE CLUSTER MASS PROFILE AVERAGED FROM THE HIGHEST-QUALITY LENSING DATA. Astrophysical Journal, 2011, 738, 41.	4. 5	112
31	CLASH: PRECISE NEW CONSTRAINTS ON THE MASS PROFILE OF THE GALAXY CLUSTER A2261. Astrophysical Journal, 2012, 757, 22.	4.5	112
32	The Hubble Deep Field South: Formulation of the Observing Campaign. Astronomical Journal, 2000, 120, 2735-2746.	4.7	111
33	Detecting Clusters of Galaxies in the Sloan Digital Sky Survey. I. Monte Carlo Comparison of Cluster Detection Algorithms. Astronomical Journal, 2002, 123, 20-36.	4.7	111
34	Overview of the Advanced Camera for Surveys on-orbit performance. , 2003, , .		107
35	A large population of  Lyman-break' galaxies in a protocluster at redshift z ≈ 4.1. Nature, 2004, 427, 47-50.	27.8	106
36	CLASH-X: A COMPARISON OF LENSING AND X-RAY TECHNIQUES FOR MEASURING THE MASS PROFILES OF GALAXY CLUSTERS. Astrophysical Journal, 2014, 794, 136.	4. 5	105

#	Article	IF	CITATIONS
37	CLASH: MASS DISTRIBUTION IN AND AROUND MACS J1206.2-0847 FROM A FULL CLUSTER LENSING ANALYSIS. Astrophysical Journal, 2012, 755, 56.	4.5	101
38	Clustering at High Redshift: Precise Constraints from a Deep, Wideâ€Area Survey. Astrophysical Journal, 1998, 506, 33-44.	4.5	91
39	A Study of Nine High-Redshift Clusters of Galaxies. II. Photometry, Spectra, and Ages of Clusters 0023+0423 and 1604+4304. Astronomical Journal, 1998, 116, 560-583.	4.7	89
40	Evolution of the Colorâ€Magnitude Relation in Highâ€Redshift Clusters: Earlyâ€Type Galaxies in the Lynx Supercluster atzâ ¹ ⁄₄ 1.26. Astrophysical Journal, 2006, 644, 759-768.	4.5	87
41	A Study of Nine High-Redshift Clusters of Galaxies. IV. Photometry and Spectra of Clusters 1324+3011 and 1604+4321. Astronomical Journal, 2001, 122, 1125-1150.	4.7	80
42	CLASH: COMPLETE LENSING ANALYSIS OF THE LARGEST COSMIC LENS MACS J0717.5+3745 AND SURROUNDING STRUCTURES. Astrophysical Journal, 2013, 777, 43.	4.5	79
43	The Angular Correlation Function of Galaxies from Early Sloan Digital Sky Survey Data. Astrophysical Journal, 2002, 579, 42-47.	4.5	77
44	A deep Abell cluster redshift survey. Astrophysical Journal, 1990, 365, 66.	4.5	77
45	ULTRAVIOLET MORPHOLOGY AND UNOBSCURED UV STAR FORMATION RATES OF CLASH BRIGHTEST CLUSTER GALAXIES. Astrophysical Journal, 2015, 805, 177.	4.5	68
46	A Study of Nine High-Redshift Clusters of Galaxies. III. [ITAL]Hubble[/ITAL] [ITAL]Space[/ITAL] [ITAL] [ITAL]elescope[/ITAL] Morphology of Clusters 0023+0423 and 1604+4304. Astronomical Journal, 1998, 116, 584-622.	4.7	66
47	A Keck Spectroscopic Survey of MS 1054â^'03 (z= 0.83): Forming the Red Sequence. Astrophysical Journal, 2007, 661, 750-767.	4.5	66
48	A BRIGHTEST CLUSTER GALAXY WITH AN EXTREMELY LARGE FLAT CORE. Astrophysical Journal, 2012, 756, 159.	4.5	62
49	A Study of Nine High-Redshift Clusters of Galaxies. I. The Survey. Astronomical Journal, 1998, 116, 549-559.	4.7	61
50	Advanced Technology Large-Aperture Space Telescope: science drivers and technology developments. Optical Engineering, 2012, 51, 011007.	1.0	59
51	Evidence for X-Ray Emission from a Large-Scale Filament of Galaxies?. Astrophysical Journal, 2000, 528, L73-L76.	4.5	59
52	A Definitive Optical Detection of a Supercluster at [CLC][ITAL]z[/ITAL][/CLC] â‰^0.91. Astrophysical Journal, 2000, 531, L5-L8.	4.5	58
53	Distant Cluster Hunting. II. A Comparison of Xâ€Ray and Optical Cluster Detection Techniques and Catalogs from theROSATOptical Xâ€Ray Survey. Astrophysical Journal, 2002, 569, 689-719.	4.5	58
54	Galaxies with a Central Minimum in Stellar Luminosity Density. Astronomical Journal, 2002, 124, 1975-1987.	4.7	56

#	Article	IF	CITATIONS
55	Anl-Band-selected Sample of Radio-emitting Quasars: Evidence for a Large Population of Red Quasars. Astronomical Journal, 2003, 126, 706-722.	4.7	56
56	Evidence for Cluster Evolution from an Improved Measurement of the Velocity Dispersion and Morphological Fraction of Cluster 1324+3011 at [CLC][ITAL]z[/ITAL][/CLC] = 0.76. Astronomical Journal, 2002, 124, 1905-1917.	, 4.7	56
57	Discovery of Two Distant Type Ia Supernovae in the Hubble Deep Field–North with the Advanced Camera for Surveys. Astrophysical Journal, 2003, 589, 693-703.	4.5	52
58	EARLY-TYPE GALAXIES AT <i>>z</i> >= 1.3. I. THE LYNX SUPERCLUSTER: CLUSTER AND GROUPS AT <i>>z</i> >= 1.3. MORPHOLOGY AND COLOR-MAGNITUDE RELATION. Astrophysical Journal, 2012, 754, 141.	4.5	52
59	Calibration of the Surface Brightness Fluctution Method for use with the Hubble Space Telescope Astronomical Journal, 1997, 114, 626.	4.7	52
60	Shellflow. I. The Convergence of the Velocity Field at 6000 Kilometers per Second. Astrophysical Journal, 2000, 544, 636-640.	4. 5	52
61	The Infrared Surface Brightness Fluctuation Hubble Constant. Astrophysical Journal, 2001, 550, 503-521.	4.5	52
62	The First Detailed X-Ray Observations of High-Redshift, Optically Selected Clusters: XMM-Newton Results for Cl 1324+3011 at $z=0.76$ and Cl 1604+4304 at $z=0.90$. Astrophysical Journal, 2004, 601, L9-L12.	4.5	51
63	THE MORPHOLOGIES AND ALIGNMENTS OF GAS, MASS, AND THE CENTRAL GALAXIES OF CLASH CLUSTERS OF GALAXIES. Astrophysical Journal, 2016, 819, 36.	4.5	50
64	Distant Cluster Hunting: A Comparison Between the Optical and X-Ray Luminosity Functions from an Optical/X-Ray Joint Survey. Astrophysical Journal, 2001, 552, L93-L96.	4.5	47
65	PROFILES OF DARK MATTER VELOCITY ANISOTROPY IN SIMULATED CLUSTERS. Astrophysical Journal, 2012, 752, 141.	4.5	47
66	The Hubble flow from brightest cluster galaxies. Astrophysical Journal, 1992, 400, L47.	4.5	47
67	THREE GRAVITATIONALLY LENSED SUPERNOVAE BEHIND CLASH GALAXY CLUSTERS. Astrophysical Journal, 2014, 786, 9.	4.5	45
68	The Evolution of Early-Type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North. Astronomical Journal, 2004, 127, 131-155.	4.7	44
69	The Projected Dark and Baryonic Ellipsoidal Structure of 20 CLASH Galaxy Clusters*. Astrophysical Journal, 2018, 860, 104.	4.5	44
70	New Horizons Observations of the Cosmic Optical Background. Astrophysical Journal, 2021, 906, 77.	4. 5	42
71	The infrared properties of quasars and radio galaxies - Testing the unification schemes. Astrophysical Journal, 1992, 391, 39.	4.5	42
72	Luminosity Functions of the Galaxy Cluster MS 1054â^'0321 atz = 0.83 based on ACS Photometry. Astrophysical Journal, 2005, 621, 188-200.	4.5	39

#	Article	IF	CITATIONS
7 3	The KPNO/Deeprange Distant Cluster Survey. I. The Catalog and the Space Density of Intermediateâ€Redshift Clusters. Astrophysical Journal, 2002, 579, 93-126.	4.5	38
74	The Farâ€Field Hubble Constant. Astrophysical Journal, 1998, 499, 577-588.	4.5	37
7 5	STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES. Astrophysical Journal, 2015, 813, 117.	4.5	36
76	THE CONTRIBUTION OF HALOS WITH DIFFERENT MASS RATIOS TO THE OVERALL GROWTH OF CLUSTER-SIZED HALOS. Astrophysical Journal, 2013, 776, 91.	4.5	33
77	Can standard cosmological models explain the observed Abell cluster bulk flow?. Astrophysical Journal, 1995, 444, 507.	4.5	33
78	Anomalous Flux in the Cosmic Optical Background Detected with New Horizons Observations. Astrophysical Journal Letters, 2022, 927, L8.	8.3	32
79	The genus curve of the Abell clusters. Astrophysical Journal, 1994, 421, 1.	4.5	30
80	The Dust and Molecular Gas in the Brightest Cluster Galaxy in MACS 1931.8-2635. Astrophysical Journal, 2019, 879, 103.	4.5	26
81	The Relationship Between Brightest Cluster Galaxy Star Formation and the Intracluster Medium in CLASH. Astrophysical Journal, 2017, 846, 103.	4.5	25
82	A Group-Group Merger at a Redshift of [ITAL]z[/ITAL] = 0.84?. Astronomical Journal, 1998, 116, 643-656.	4.7	25
83	GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847. Astrophysical Journal, 2013, 774, 124.	4.5	24
84	CLASH-VLT: CONSTRAINTS ON THE DARK MATTER EQUATION OF STATE FROM ACCURATE MEASUREMENTS OF GALAXY CLUSTER MASS PROFILES. Astrophysical Journal Letters, 2014, 783, L11.	8.3	23
85	THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS. Astrophysical Journal, 2016, 817, 85.	4.5	23
86	Crowded Field Galaxy Photometry: Precision Colors in the CLASH Clusters. Astrophysical Journal, 2017, 848, 37.	4.5	23
87	Discovery of a New Fundamental Plane Dictating Galaxy Cluster Evolution from Gravitational Lensing. Astrophysical Journal, 2018, 857, 118.	4.5	23
88	Modular assembled space telescope. Optical Engineering, 2013, 52, 091802.	1.0	22
89	Observational Constraints on Higher Order Clustering up tozâ‰ f 1. Astrophysical Journal, 2001, 548, 114-126.	4.5	20
90	Constraints on the Mass, Concentration, and Nonthermal Pressure Support of Six CLASH Clusters from a Joint Analysis of X-Ray, SZ, and Lensing Data. Astrophysical Journal, 2018, 861, 71.	4.5	19

#	Article	lF	Citations
91	IRAS galaxies and the large-scale structure in the CfA slice. Astrophysical Journal, 1990, 359, 280.	4.5	18
92	Science with an 8-meter to 16-meter optical/UV space telescope. Proceedings of SPIE, 2008, , .	0.8	17
93	Observations of Lyα and O vi: Signatures of Cooling and Star Formation in a Massive Central Cluster Galaxy. Astrophysical Journal, 2017, 835, 216.	4. 5	16
94	The Palomar Distant Cluster Survey. II. The Cluster Profiles. Astronomical Journal, 1996, 111, 1795.	4.7	14
95	The shapes of brightest cluster galaxies. Astrophysical Journal, 1993, 410, 515.	4.5	14
96	The Lumpy Cluster Abell 1185. Astronomical Journal, 1996, 111, 64.	4.7	12
97	CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2015, 801, 12.	4.5	10
98	A Radio Relic and a Search for the Central Black Hole in the Abell 2261 Brightest Cluster Galaxy. Astrophysical Journal, 2017, 849, 59.	4.5	10
99	Is there structure on the scale of 300/h MPC ?. Astrophysical Journal, 1989, 346, 588.	4.5	10
100	Improving dark energy constraints with high-redshift Type Ia supernovae from CANDELS and CLASH. Astronomy and Astrophysics, 2013, 557, A64.	5.1	9
101	Design for an 8-meter monolithic UV/OIR space telescope. Proceedings of SPIE, 2009, , .	0.8	8
102	ATLAST-8 Mission concept study for 8-meter monolithic UV/optical space telescope., 2010,,.		8
103	The Evolutionary Status of Clusters of Galaxies at Z $\hat{a}^{1}/4$ 1. Astrophysics and Space Science Library, 2004, , 459-476.	2.7	8
104	Chandra Observations of Abell 2261 Brightest Cluster Galaxy, a Candidate Host to a Recoiling Black Hole. Astrophysical Journal, 2021, 906, 48.	4.5	7
105	AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes., 2014,,.		6
106	Stellar Mass and 3.4 μm M/L Ratio Evolution of Brightest Cluster Galaxies in COSMOS since zÂâ^¼Â1.0. Astrophysical Journal, 2018, 857, 122.	4.5	5
107	Halo Concentrations and the Fundamental Plane of Galaxy Clusters. Galaxies, 2019, 7, 8.	3.0	4
108	Distribution of Galaxies, Clusters, and Superclusters. , 0, , .		2

#	Article	IF	Citations
109	Optical photometry of the emission-line M star PC 0025 + 0447. Publications of the Astronomical Society of the Pacific, 1993, 105, 821.	3.1	2
110	LoVoCCS. I. Survey Introduction, Data Processing Pipeline, and Early Science Results. Astrophysical Journal, 2022, 933, 84.	4.5	2
111	The Spatial Distribution of the Nearby Rich Clusters of Galaxies. Annals of the New York Academy of Sciences, 1991, 647, 796-814.	3.8	0
112	The Motion of the Local Group with Respect to the 15,000 km/s Abell Cluster Frame. Annals of the New York Academy of Sciences, 1993, 688, 531-533.	3.8	0
113	A new paradigm for space astrophysics mission design. , 2014, , .		0
114	The new fundamental plane dictating galaxy cluster evolution. Proceedings of the International Astronomical Union, 2019, 15, 271-272.	0.0	0
115	A high-definition space telescope for the 2030s. SPIE Newsroom, 0, , .	0.1	0