Andrew J Oxenham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6876454/publications.pdf Version: 2024-02-01

		28190	37111
210	11,078	55	96
papers	citations	h-index	g-index
222	222	222	3765
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chimaeric sounds reveal dichotomies in auditory perception. Nature, 2002, 416, 87-90.	13.7	829
2	Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3318-3323.	3.3	420
3	Influence of musical and psychoacoustical training on pitch discrimination. Hearing Research, 2006, 219, 36-47.	0.9	372
4	Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers. Journal of the Acoustical Society of America, 2003, 114, 446-454.	0.5	348
5	A Neural Representation of Pitch Salience in Nonprimary Human Auditory Cortex Revealed with Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2004, 24, 6810-6815.	1.7	248
6	A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. Journal of the Acoustical Society of America, 1997, 101, 3666-3675.	0.5	246
7	Modeling the additivity of nonsimultaneous masking. Hearing Research, 1994, 80, 105-118.	0.9	233
8	Temporal Coherence in the Perceptual Organization and Cortical Representation of Auditory Scenes. Neuron, 2009, 61, 317-329.	3.8	215
9	Correct tonotopic representation is necessary for complex pitch perception. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1421-1425.	3.3	213
10	Individual Differences Reveal the Basis of Consonance. Current Biology, 2010, 20, 1035-1041.	1.8	200
11	Neuromagnetic Correlates of Streaming in Human Auditory Cortex. Journal of Neuroscience, 2005, 25, 5382-5388.	1.7	195
12	Otoacoustic Estimation of Cochlear Tuning: Validation in the Chinchilla. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 343-365.	0.9	182
13	Pitch discrimination of diotic and dichotic tone complexes: Harmonic resolvability or harmonic number?. Journal of the Acoustical Society of America, 2003, 113, 3323.	0.5	176
14	Pitch Perception and Auditory Stream Segregation: Implications for Hearing Loss and Cochlear Implants. Trends in Amplification, 2008, 12, 316-331.	2.4	173
15	Additivity of masking in normally hearing and hearingâ€impaired subjects. Journal of the Acoustical Society of America, 1995, 98, 1921-1934.	0.5	167
16	Estimates of Human Cochlear Tuning at Low Levels Using Forward and Simultaneous Masking. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 541-554.	0.9	166
17	The role of auditory cortex in the formation of auditory streams. Hearing Research, 2007, 229, 116-131.	0.9	165
18	Neural Correlates of Auditory Perceptual Awareness under Informational Masking. PLoS Biology, 2008, 6, e138.	2.6	163

#	Article	IF	CITATIONS
19	Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 2008, 18, 452-463.	2.0	160
20	Basilar-membrane nonlinearity and the growth of forward masking. Journal of the Acoustical Society of America, 1998, 103, 1598-1608.	0.5	152
21	Sequential stream segregation in the absence of spectral cues. Journal of the Acoustical Society of America, 1999, 105, 339-346.	0.5	147
22	Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism. Journal of the Acoustical Society of America, 1999, 106, 2761-2778.	0.5	137
23	Forward masking: Adaptation or integration?. Journal of the Acoustical Society of America, 2001, 109, 732-741.	0.5	136
24	Cochlear Compression: Perceptual Measures and Implications for Normal and Impaired Hearing. Ear and Hearing, 2003, 24, 352-366.	1.0	135
25	The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task. Journal of the Acoustical Society of America, 1999, 106, 938-945.	0.5	125
26	Effects of introducing unprocessed low-frequency information on the reception of envelope-vocoder processed speech. Journal of the Acoustical Society of America, 2006, 119, 2417-2426.	0.5	121
27	Influence of Musical Training on Understanding Voiced and Whispered Speech in Noise. PLoS ONE, 2014, 9, e86980.	1.1	120
28	Pitch Perception. Journal of Neuroscience, 2012, 32, 13335-13338.	1.7	118
29	Informational masking and musical training. Journal of the Acoustical Society of America, 2003, 114, 1543-1549.	0.5	109
30	Pitch, harmonicity and concurrent sound segregation: Psychoacoustical and neurophysiological findings. Hearing Research, 2010, 266, 36-51.	0.9	107
31	Psychoacoustic consequences of compression in the peripheral auditory system Psychological Review, 1998, 105, 108-124.	2.7	100
32	Masking release for low- and high-pass-filtered speech in the presence of noise and single-talker interference. Journal of the Acoustical Society of America, 2009, 125, 457-468.	0.5	100
33	How We Hear: The Perception and Neural Coding of Sound. Annual Review of Psychology, 2018, 69, 27-50.	9.9	98
34	Effects of Envelope-Vocoder Processing on FO Discrimination and Concurrent-Vowel Identification. Ear and Hearing, 2005, 26, 451-460.	1.0	97
35	Symmetric interactions and interference between pitch and timbre. Journal of the Acoustical Society of America, 2014, 135, 1371-1379.	0.5	94
36	Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users. Journal of the Acoustical Society of America, 2011, 130, 364-375.	0.5	92

#	Article	IF	CITATIONS
37	Recovering sound sources from embedded repetition. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1188-1193.	3.3	91
38	Pitch perception beyond the traditional existence region of pitch. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7629-7634.	3.3	91
39	Speech Perception in Tones and Noise via Cochlear Implants Reveals Influence of Spectral Resolution on Temporal Processing. Trends in Hearing, 2014, 18, 233121651455378.	0.7	83
40	Is Relative Pitch Specific to Pitch?. Psychological Science, 2008, 19, 1263-1271.	1.8	80
41	An autocorrelation model with place dependence to account for the effect of harmonic number on fundamental frequency discrimination. Journal of the Acoustical Society of America, 2005, 117, 3816-3831.	0.5	79
42	An online headphone screening test based on dichotic pitch. Behavior Research Methods, 2021, 53, 1551-1562.	2.3	79
43	The relationship between frequency selectivity and pitch discrimination: Sensorineural hearing loss. Journal of the Acoustical Society of America, 2006, 120, 3929-3945.	0.5	78
44	Cortical fMRI Activation to Sequences of Tones Alternating in Frequency: Relationship to Perceived Rate and Streaming. Journal of Neurophysiology, 2007, 97, 2230-2238.	0.9	77
45	The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints. Hearing Research, 2019, 377, 109-121.	0.9	76
46	Human Cortical Activity during Streaming without Spectral Cues Suggests a General Neural Substrate for Auditory Stream Segregation. Journal of Neuroscience, 2007, 27, 13074-13081.	1.7	74
47	Representations of Pitch and Timbre Variation in Human Auditory Cortex. Journal of Neuroscience, 2017, 37, 1284-1293.	1.7	73
48	Weak Middle-Ear-Muscle Reflex in Humans with Noise-Induced Tinnitus and Normal Hearing May Reflect Cochlear Synaptopathy. ENeuro, 2017, 4, ENEURO.0363-17.2017.	0.9	72
49	Can temporal fine structure represent the fundamental frequency of unresolved harmonics?. Journal of the Acoustical Society of America, 2009, 125, 2189-2199.	0.5	69
50	Objective and Subjective Psychophysical Measures of Auditory Stream Integration and Segregation. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 709-724.	0.9	69
51	Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users. Journal of the Acoustical Society of America, 2012, 132, 3925-3934.	0.5	69
52	Suppression and the upward spread of masking. Journal of the Acoustical Society of America, 1998, 104, 3500-3510.	0.5	68
53	Towards a measure of auditory-filter phase response. Journal of the Acoustical Society of America, 2001, 110, 3169-3178.	0.5	65
54	Predicting the Perceptual Consequences of Hidden Hearing Loss. Trends in Hearing, 2016, 20, 233121651668676.	0.7	64

#	Article	IF	CITATIONS
55	Basilar-membrane nonlinearity estimated by pulsation threshold. Journal of the Acoustical Society of America, 2000, 107, 501-507.	0.5	61
56	Musicians do not benefit from differences in fundamental frequency when listening to speech in competing speech backgrounds. Scientific Reports, 2017, 7, 12624.	1.6	58
57	Effects of masker frequency and duration in forward masking: further evidence for the influence of peripheral nonlinearity. Hearing Research, 2000, 150, 258-266.	0.9	55
58	Short-term temporal integration: Evidence for the influence of peripheral compression. Journal of the Acoustical Society of America, 1997, 101, 3676-3687.	0.5	54
59	A sound element gets lost in perceptual competition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12223-12227.	3.3	54
60	Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11322-11326.	3.3	54
61	Comparing different estimates of cochlear compression in listeners with normal and impaired hearing. Journal of the Acoustical Society of America, 2005, 117, 3028-3041.	0.5	53
62	The Psychophysics of Pitch. , 2005, , 7-55.		53
63	Musical intervals and relative pitch: Frequency resolution, not interval resolution, is special. Journal of the Acoustical Society of America, 2010, 128, 1943-1951.	0.5	52
64	Temporal coherence structure rapidly shapes neuronal interactions. Nature Communications, 2017, 8, 13900.	5.8	50
65	Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 543-557.	0.7	48
66	Reconciling frequency selectivity and phase effects in masking. Journal of the Acoustical Society of America, 2001, 110, 1525-1538.	0.5	47
67	Auditory stream formation affects comodulation masking release retroactively. Journal of the Acoustical Society of America, 2009, 125, 2182-2188.	0.5	47
68	A Low-Power Asynchronous Interleaved Sampling Algorithm for Cochlear Implants That Encodes Envelope and Phase Information. IEEE Transactions on Biomedical Engineering, 2007, 54, 138-149.	2.5	46
69	Influence of spatial and temporal coding on auditory gap detection. Journal of the Acoustical Society of America, 2000, 107, 2215-2223.	0.5	45
70	The relationship between frequency selectivity and pitch discrimination: Effects of stimulus level. Journal of the Acoustical Society of America, 2006, 120, 3916-3928.	0.5	45
71	Auditory Frequency and Intensity Discrimination Explained Using a Cortical Population Rate Code. PLoS Computational Biology, 2013, 9, e1003336.	1.5	43
72	Cognitive factors contribute to speech perception in cochlear-implant users and age-matched normal-hearing listeners under vocoded conditions. Journal of the Acoustical Society of America, 2019, 146, 195-210.	0.5	43

#	Article	IF	CITATIONS
73	Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level. Hearing Research, 2012, 292, 1-13.	0.9	42
74	Modulation detection interference: Effects of concurrent and sequential streaming. Journal of the Acoustical Society of America, 2001, 110, 402-408.	0.5	40
75	Masker phase effects in normal-hearing and hearing-impaired listeners: Evidence for peripheral compression at low signal frequencies. Journal of the Acoustical Society of America, 2004, 116, 2248-2257.	0.5	40
76	Speech perception is similar for musicians and non-musicians across aÂwide range of conditions. Scientific Reports, 2019, 9, 10404.	1.6	40
77	Vocoder Simulations Explain Complex Pitch Perception Limitations Experienced by Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 789-802.	0.9	38
78	Assessing the Role of Place and Timing Cues in Coding Frequency and Amplitude Modulation as a Function of Age. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 619-633.	0.9	38
79	Intelligibility of whispered speech in stationary and modulated noise maskers. Journal of the Acoustical Society of America, 2012, 132, 2514-2523.	0.5	35
80	Auditory stream segregation and the perception of across-frequency synchrony Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 1029-1039.	0.7	34
81	Estimates of compression at low and high frequencies using masking additivity in normal and impaired ears. Journal of the Acoustical Society of America, 2008, 123, 4321-4330.	0.5	33
82	Masking by Inaudible Sounds and the Linearity of Temporal Summation. Journal of Neuroscience, 2006, 26, 8767-8773.	1.7	32
83	Pitfalls in behavioral estimates of basilar-membrane compression in humans. Journal of the Acoustical Society of America, 2009, 125, 270-281.	0.5	32
84	Revisiting place and temporal theories of pitch. Acoustical Science and Technology, 2013, 34, 388-396.	0.3	32
85	Temporal coherence versus harmonicity in auditory stream formation. Journal of the Acoustical Society of America, 2013, 133, EL188-EL194.	0.5	31
86	Mechanisms of Localization and Speech Perception with Colocated and Spatially Separated Noise and Speech Maskers Under Single-Sided Deafness with a Cochlear Implant. Ear and Hearing, 2019, 40, 1293-1306.	1.0	31
87	Level discrimination of sinusoids as a function of duration and level for fixed-level, roving-level, and across-frequency conditions. Journal of the Acoustical Society of America, 2000, 107, 1605-1614.	0.5	30
88	Behavioral measures of auditory streaming in ferrets (Mustela putorius) Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 317-330.	0.3	30
89	Temporal Coherence and the Streaming of Complex Sounds. Advances in Experimental Medicine and Biology, 2013, 787, 535-543.	0.8	30
90	Sequential F0 comparisons between resolved and unresolved harmonics: No evidence for translation noise between two pitch mechanisms. Journal of the Acoustical Society of America, 2004, 116, 3038-3050.	0.5	29

#	Article	IF	CITATIONS
91	Harmonic segregation through mistuning can improve fundamental frequency discrimination. Journal of the Acoustical Society of America, 2008, 124, 1653-1667.	0.5	29
92	Using individual differences to test the role of temporal and place cues in coding frequency modulation. Journal of the Acoustical Society of America, 2015, 138, 3093-3104.	0.5	29
93	Level dependence of auditory filters in nonsimultaneous masking as a function of frequency. Journal of the Acoustical Society of America, 2006, 119, 444-453.	0.5	28
94	Spectral completion of partially masked sounds. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5939-5944.	3.3	28
95	Perceptual grouping affects pitch judgments across time and frequency Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 257-269.	0.7	28
96	Auditory stream segregation for alternating and synchronous tones Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 1568-1580.	0.7	28
97	Detection and F0 discrimination of harmonic complex tones in the presence of competing tones or noise. Journal of the Acoustical Society of America, 2006, 120, 1493-1505.	0.5	27
98	Sound texture synthesis via filter statistics. , 2009, , .		27
99	Perception of across-frequency asynchrony and the role of cochlear delays. Journal of the Acoustical Society of America, 2012, 131, 363-377.	0.5	25
100	Vowel enhancement effects in cochlear-implant users. Journal of the Acoustical Society of America, 2012, 131, EL421-EL426.	0.5	24
101	Congenital amusia: A cognitive disorder limited to resolved harmonics and with no peripheral basis. Neuropsychologia, 2015, 66, 293-301.	0.7	24
102	Superoptimal Perceptual Integration Suggests a Place-Based Representation of Pitch at High Frequencies. Journal of Neuroscience, 2017, 37, 9013-9021.	1.7	23
103	Encoding of natural timbre dimensions in human auditory cortex. NeuroImage, 2018, 166, 60-70.	2.1	23
104	Hearing, Emotion, Amplification, Research, and Training Workshop: Current Understanding of Hearing Loss and Emotion Perception and Priorities for Future Research. Trends in Hearing, 2018, 22, 233121651880321.	0.7	23
105	Short- and long-term memory for pitch and non-pitch contours: Insights from congenital amusia. Brain and Cognition, 2019, 136, 103614.	0.8	23
106	Pitch perception for mixtures of spectrally overlapping harmonic complex tones. Journal of the Acoustical Society of America, 2010, 128, 257-269.	0.5	22
107	Does fundamental-frequency discrimination measure virtual pitch discrimination?. Journal of the Acoustical Society of America, 2010, 128, 1930-1942.	0.5	22
108	Modulation Frequency Discrimination with Modulated and Unmodulated Interference in Normal Hearing and in Cochlear-Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 591-601.	0.9	22

#	Article	IF	CITATIONS
109	Across-frequency pitch discrimination interference between complex tones containing resolved harmonics. Journal of the Acoustical Society of America, 2007, 121, 1621-1631.	O.5	21
110	New perspectives on the measurement and time course of auditory enhancement Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 1696-1708.	0.7	21
111	A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise. Ear and Hearing, 2018, 39, 1136-1145.	1.0	21
112	The role of cochlear place coding in the perception of frequency modulation. ELife, 2020, 9, .	2.8	21
113	Evaluation of companding-based spectral enhancement using simulated cochlear-implant processing. Journal of the Acoustical Society of America, 2007, 121, 1709-1716.	0.5	20
114	Recovery from on- and off-frequency forward masking in listeners with normal and impaired hearing. Journal of the Acoustical Society of America, 2010, 128, 247-256.	0.5	20
115	A Fast Method for Measuring Psychophysical Thresholds Across the Cochlear Implant Array. Trends in Hearing, 2015, 19, 233121651556979.	0.7	19
116	Comparing models of the combined-stimulation advantage for speech recognition. Journal of the Acoustical Society of America, 2012, 131, 3970-3980.	0.5	18
117	Behavioral measures of cochlear compression and temporal resolution as predictors of speech masking release in hearing-impaired listeners. Journal of the Acoustical Society of America, 2013, 134, 2895-2912.	0.5	18
118	Auditory deficits in amusia extend beyond poor pitch perception. Neuropsychologia, 2017, 99, 213-224.	0.7	18
119	Overshoot and the â€ ⁻ â€ ⁻ severe departure'' from Weber's law. Journal of the Acoustical Society of America, 1995, 97, 2442-2453.	0.5	17
120	Hearing Out Repeating Elements in Randomly Varying Multitone Sequences: A Case of Streaming?. , 2007, , 267-274.		17
121	Sensory noise explains auditory frequency discrimination learning induced by training with identical stimuli. Perception & Psychophysics, 2009, 71, 5-7.	2.3	17
122	Effects of auditory enhancement on the loudness of masker and target components. Hearing Research, 2016, 333, 150-156.	0.9	17
123	Sequential stream segregation of voiced and unvoiced speech sounds based on fundamental frequency. Hearing Research, 2017, 344, 235-243.	0.9	17
124	Psychophysical Manifestations of Compression: Normal-Hearing Listeners. , 2004, , 62-106.		16
125	Effects of level and background noise on interaural time difference discrimination for transposed stimuli. Journal of the Acoustical Society of America, 2008, 123, EL1-EL7.	0.5	16
126	On- and Off-Frequency Forward Masking by Schroeder-Phase Complexes. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 595-607.	0.9	16

#	Article	IF	CITATIONS
127	Assessing the effects of temporal coherence on auditory stream formation through comodulation masking release. Journal of the Acoustical Society of America, 2014, 135, 3520-3529.	0.5	15
128	Learning for pitch and melody discrimination in congenital amusia. Cortex, 2018, 103, 164-178.	1.1	15
129	Spectral contrast effects produced by competing speech contexts Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 1447-1457.	0.7	15
130	Modulation rate discrimination using half-wave rectified and sinusoidally amplitude modulated stimuli in cochlear-implant users. Journal of the Acoustical Society of America, 2010, 127, 656-659.	0.5	14
131	Further evidence that fundamental-frequency difference limens measure pitch discrimination. Journal of the Acoustical Society of America, 2012, 131, 3989-4001.	0.5	14
132	The Perception of Musical Tones. , 2013, , 1-33.		14
133	Effects of concurrent and sequential streaming in comodulation masking release. , 2005, , 334-342.		13
134	Investigating age, hearing loss, and background noise effects on speaker-targeted head and eye movements in three-way conversations. Journal of the Acoustical Society of America, 2021, 149, 1889-1900.	0.5	13
135	Global Not Local Masker Features Govern the Auditory Continuity Illusion. Journal of Neuroscience, 2012, 32, 4660-4664.	1.7	12
136	Stimulus Frequency Otoacoustic Emissions Provide No Evidence for the Role of Efferents in the Enhancement Effect. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 613-629.	0.9	12
137	Speech Perception with Spectrally Non-overlapping Maskers as Measure of Spectral Resolution in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 151-167.	0.9	12
138	Role of semantic context and talker variability in speech perception of cochlear-implant users and normal-hearing listeners. Journal of the Acoustical Society of America, 2021, 149, 1224-1239.	0.5	12
139	Spectral motion contrast as a speech context effect. Journal of the Acoustical Society of America, 2014, 136, 1237-1245.	0.5	11
140	Speech intelligibility is best predicted by intensity, not cochlea-scaled entropy. Journal of the Acoustical Society of America, 2017, 142, EL264-EL269.	0.5	11
141	Examining replicability of an otoacoustic measure of cochlear function during selective attention. Journal of the Acoustical Society of America, 2018, 144, 2882-2895.	0.5	11
142	Auditory enhancement and the role of spectral resolution in normal-hearing listeners and cochlear-implant users. Journal of the Acoustical Society of America, 2018, 144, 552-566.	0.5	11
143	Pitch discrimination with mixtures of three concurrent harmonic complexes. Journal of the Acoustical Society of America, 2019, 145, 2072-2083.	0.5	11
144	The Perception of Multiple Simultaneous Pitches as a Function of Number of Spectral Channels and Spectral Spread in a Noise-Excited Envelope Vocoder. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 61-72.	0.9	11

Andrew J Oxenham

#	Article	IF	CITATIONS
145	Distinct Representations of Tonotopy and Pitch in Human Auditory Cortex. Journal of Neuroscience, 2022, 42, 416-434.	1.7	11
146	A further test of the linearity of temporal summation in forward masking. Journal of the Acoustical Society of America, 2007, 122, 1880-1883.	0.5	10
147	Effects of background noise level on behavioral estimates of basilar-membrane compression. Journal of the Acoustical Society of America, 2010, 127, 3018-3025.	0.5	10
148	Rhythm judgments reveal a frequency asymmetry in the perception and neural coding of sound synchrony. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1201-1206.	3.3	10
149	Discrimination and streaming of speech sounds based on differences in interaural and spectral cues. Journal of the Acoustical Society of America, 2017, 142, 1674-1685.	0.5	10
150	No effects of attention or visual perceptual load on cochlear function, as measured with stimulus-frequency otoacoustic emissions. Journal of the Acoustical Society of America, 2019, 146, 1475-1491.	0.5	10
151	Sensitivity to binaural temporal-envelope beats with single-sided deafness and a cochlear implant as a measure of tonotopic match (L). Journal of the Acoustical Society of America, 2020, 147, 3626-3630.	0.5	10
152	Effect of lowest harmonic rank on fundamental-frequency difference limens varies with fundamental frequency. Journal of the Acoustical Society of America, 2020, 147, 2314-2322.	0.5	10
153	Estimates of auditory filter phase response at and below characteristic frequency (L). Journal of the Acoustical Society of America, 2005, 117, 1713-1716.	0.5	9
154	Loudness Context Effects in Normal-Hearing Listeners and Cochlear-Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 535-545.	0.9	9
155	Auditory enhancement under simultaneous masking in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 2018, 143, 901-910.	0.5	9
156	Effects of spectral resolution on spectral contrast effects in cochlear-implant users. Journal of the Acoustical Society of America, 2018, 143, EL468-EL473.	0.5	9
157	Comparing F0 discrimination in sequential and simultaneous conditions. Journal of the Acoustical Society of America, 2005, 118, 41-44.	0.5	8
158	Effects of pulsing of a target tone on the ability to hear it out in different types of complex sounds. Journal of the Acoustical Society of America, 2012, 131, 2927-2937.	0.5	8
159	Expectations for melodic contours transcend pitch Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 2338-2347.	0.7	8
160	Exploring the Role of Feedback-Based Auditory Reflexes in Forward Masking by Schroeder-Phase Complexes. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 81-99.	0.9	8
161	Auditory Enhancement in Cochlear-Implant Users Under Simultaneous and Forward Masking. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 483-493.	0.9	8
162	The role of pitch and harmonic cancellation when listening to speech in harmonic background sounds. Journal of the Acoustical Society of America, 2019, 145, 3011-3023.	0.5	8

#	Article	IF	CITATIONS
163	Cortical Correlates of Attention to Auditory Features. Journal of Neuroscience, 2019, 39, 3292-3300.	1.7	8
164	The pulse-train auditory aftereffect and the perception of rapid amplitude modulations. Journal of the Acoustical Society of America, 2008, 123, 935-945.	0.5	7
165	An auditory illusion reveals the role of streaming in the temporal misallocation of perceptual objects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160114.	1.8	7
166	Speech Masking in Normal and Impaired Hearing: Interactions Between Frequency Selectivity and Inherent Temporal Fluctuations in Noise. Advances in Experimental Medicine and Biology, 2016, 894, 125-132.	0.8	7
167	Development and Validation of Sentences Without Semantic Context to Complement the Basic English Lexicon Sentences. Journal of Speech, Language, and Hearing Research, 2020, 63, 3847-3854.	0.7	7
168	Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning. PLoS ONE, 2017, 12, e0168858.	1.1	6
169	Effect of age and hearing loss on auditory stream segregation of speech sounds. Hearing Research, 2018, 364, 118-128.	0.9	6
170	Infant Pitch and Timbre Discrimination in the Presence of Variation in the Other Dimension. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 693-702.	0.9	6
171	Frequency selectivity and masking. , 2010, , .		5
172	On the possibility of a place code for the low pitch of high-frequency complex tones. Journal of the Acoustical Society of America, 2012, 132, 3883-3895.	0.5	5
173	Effects of temporal stimulus properties on the perception of across-frequency asynchrony. Journal of the Acoustical Society of America, 2013, 133, 982-997.	0.5	5
174	Mechanisms and mechanics of auditory masking. Journal of Physiology, 2013, 591, 2375-2375.	1.3	5
175	Neural correlates of attention and streaming in a perceptually multistable auditory illusion. Journal of the Acoustical Society of America, 2016, 140, 2225-2233.	0.5	5
176	Induced Loudness Reduction and Enhancement in Acoustic and Electric Hearing. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 383-391.	0.9	5
177	Familiar Tonal Context Improves Accuracy of Pitch Interval Perception. Frontiers in Psychology, 2017, 8, 1753.	1.1	5
178	Neural auditory contrast enhancement in humans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
179	Pitch Perception: Dissociating Frequency from Fundamental-Frequency Discrimination. Advances in Experimental Medicine and Biology, 2013, 787, 137-145.	0.8	4
180	Cortical markers of auditory stream segregation revealed for streaming based on tonotopy but not pitch. Journal of the Acoustical Society of America, 2018, 144, 2424-2433.	0.5	4

#	Article	IF	CITATIONS
181	Auditory filter shapes derived from forward and simultaneous masking at low frequencies: Implications for human cochlear tuning. Hearing Research, 2022, 420, 108500.	0.9	4
182	Behavioral estimates of basilar-membrane compression: Additivity of forward masking in noise-masked normal-hearing listeners. Journal of the Acoustical Society of America, 2011, 130, 2835-2844.	0.5	3
183	Fundamental-frequency discrimination based on temporal-envelope cues: Effects of bandwidth and interference. Journal of the Acoustical Society of America, 2018, 144, EL423-EL428.	0.5	3
184	Comparing Rapid and Traditional Forward-Masked Spatial Tuning Curves in Cochlear-Implant Users. Trends in Hearing, 2019, 23, 233121651985130.	0.7	3
185	No Benefit of Deriving Cochlear-Implant Maps From Binaural Temporal-Envelope Sensitivity for Speech Perception or Spatial Hearing Under Single-Sided Deafness. Ear and Hearing, 2022, 43, 310-322.	1.0	3
186	Sequential and Simultaneous Auditory Grouping Measured with Synchrony Detection. , 2010, , 489-496.		3
187	Perceptual asymmetry induced by the auditory continuity illusion Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 908-914.	0.7	2
188	Loudness Context Effects and Auditory Enhancement in Normal, Impaired, and Electric Hearing. Acta Acustica United With Acustica, 2018, 104, 839-843.	0.8	2
189	Auditory enhancement under forward masking in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 2019, 146, 3448-3456.	0.5	2
190	Spectral contrast effects and auditory enhancement under normal and impaired hearing. Acoustical Science and Technology, 2020, 41, 108-112.	0.3	2
191	Comment on â€~Rapid acquisition of auditory subcortical steady state responses using multichannel recordings'. Clinical Neurophysiology, 2020, 131, 1833-1834.	0.7	2
192	No interaction between fundamental-frequency differences and spectral region when perceiving speech in a speech background. PLoS ONE, 2021, 16, e0249654.	1.1	2
193	Human discrimination and modeling of high-frequency complex tones shed light on the neural codes for pitch. PLoS Computational Biology, 2022, 18, e1009889.	1.5	2
194	Voice disadvantage effects in absolute and relative pitch judgments. Journal of the Acoustical Society of America, 2022, 151, 2414-2428.	0.5	2
195	Perception of Across-Frequency Asynchrony by Listeners with Cochlear Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 573-589.	0.9	1
196	Illusory Auditory Continuity Despite Neural Evidence to the Contrary. Advances in Experimental Medicine and Biology, 2013, 787, 483-489.	0.8	1
197	Central Auditory Masking by an Illusory Tone. PLoS ONE, 2013, 8, e75822.	1.1	1
198	Intelligibility of voiced and whispered speech in noise in listeners with and without musical training. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1

0

#	Article	IF	CITATIONS
199	Spectral Contrast Effects Reveal Different Acoustic Cues for Vowel Recognition in Cochlear-Implant Users. Ear and Hearing, 2020, 41, 990-997.	1.0	1
200	Preferences for melodic contours transcend pitch. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
201	The role of peripheral spectro-temporal coding in congenital amusia. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
202	Retroactive Streaming Fails to Improve Concurrent Vowel Identification. PLoS ONE, 2015, 10, e0140466.	1.1	0
203	Restoring Hearing with Neural Prostheses: Current Status and Future Directions. Series on Bioengineering and Biomedical Engineering, 2017, , 668-709.	0.1	0
204	Estimating human cochlear tuning behaviorally via forward masking. AIP Conference Proceedings, 2018, , .	0.3	0
205	Helmholtz. Journal of Clinical Investigation, 2011, 121, 2064-2064.	3.9	0
206	The effect of the medial olivocochlear reflex on click-evoked otoacoustic emissions during psychoacoustic forward-masking tasks. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
207	Masking and Masking Release. , 2014, , 1-4.		0
208	Masking and Masking Release. , 2019, , 1-4.		0
209	What Makes Human Hearing Special?. Frontiers for Young Minds, 0, 10, .	0.8	0

210 Masking and Masking Release. , 2022, , 1973-1975.