Wolfgang Kleist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6876395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Generation of Highly Active Dissolved Palladium Species from Solid Catalysts—A Concept for the Activation of Aryl Chlorides in the Heck Reaction. Angewandte Chemie - International Edition, 2004, 43, 1881-1882.	13.8	251
2	Mixedâ€Linker Metalâ€Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO ₂ . European Journal of Inorganic Chemistry, 2009, 2009, 3552-3561.	2.0	229
3	Genesis of Coordinatively Unsaturated Palladium Complexes Dissolved from Solid Precursors during Heck Coupling Reactions and Their Role as Catalytically Active Species. Inorganic Chemistry, 2007, 46, 1876-1883.	4.0	187
4	Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. Journal of Catalysis, 2011, 281, 76-87.	6.2	179
5	Potential of an Alumina-Supported Ni ₃ Fe Catalyst in the Methanation of CO ₂ : Impact of Alloy Formation on Activity and Stability. ACS Catalysis, 2017, 7, 6802-6814.	11.2	150
6	Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy. Journal of Catalysis, 2015, 327, 48-53.	6.2	143
7	MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application. Thermochimica Acta, 2010, 499, 71-78.	2.7	142
8	Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). Dalton Transactions, 2010, 39, 3795.	3.3	123
9	Catalytic hydrodeoxygenation of guaiacol over platinum supported on metal oxides and zeolites. Applied Catalysis A: General, 2015, 490, 181-192.	4.3	112
10	Aerobic Epoxidation of Olefins Catalyzed by the Cobaltâ€Based Metal–Organic Framework STAâ€12(Co). Chemistry - A European Journal, 2012, 18, 887-898.	3.3	110
11	Gold-Catalyzed Aerobic Oxidation of Benzyl Alcohol: Effect of Gold Particle Size on Activity and Selectivity in Different Solvents. Catalysis Letters, 2008, 125, 169-176.	2.6	108
12	Copper-free heterogeneous catalysts for the Sonogashira cross-coupling reaction: Preparation, characterisation, activity and applications for organic synthesis. Journal of Molecular Catalysis A, 2005, 241, 39-51.	4.8	99
13	Identification of the Active Species Generated from Supported Pd Catalysts in Heck Reactions: An in situ Quick Scanning EXAFS Investigation. Journal of the American Chemical Society, 2011, 133, 3921-3930.	13.7	97
14	Supported gold- and silver-based catalysts for the selective aerobic oxidation of 5-(hydroxymethyl)furfural to 2,5-furandicarboxylic acid and 5-hydroxymethyl-2-furancarboxylic acid. Green Chemistry, 2018, 20, 3530-3541.	9.0	93
15	Synthesis of Î ³ -valerolactone by hydrogenation of levulinic acid over supported nickel catalysts. Applied Catalysis A: General, 2015, 502, 18-26.	4.3	87
16	Design of highly active heterogeneous palladium catalysts for the activation of aryl chlorides in Heck reactions. Tetrahedron, 2005, 61, 9855-9859.	1.9	81
17	Synthesis and characterization of bimetallic metal–organic framework Cu–Ru-BTC with HKUST-1 structure. Dalton Transactions, 2015, 44, 2052-2056.	3.3	81
18	Recent Advances in Selective Propylene Oxidation over Bismuth Molybdate Based Catalysts: Synthetic, Spectroscopic, and Theoretical Approaches. ACS Catalysis, 2017, 7, 5628-5642.	11.2	67

#	Article	IF	CITATIONS
19	Formic Acidâ€Assisted Selective Hydrogenolysis of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran over Bifunctional Pd Nanoparticles Supported on Nâ€Doped Mesoporous Carbon. Angewandte Chemie - International Edition, 2021, 60, 6807-6815.	13.8	65
20	Salenâ€Based Coordination Polymers of Manganese and the Rareâ€Earth Elements: Synthesis and Catalytic Aerobic Epoxidation of Olefins. Chemistry - A European Journal, 2013, 19, 1986-1995.	3.3	62
21	Operando Raman spectroscopy on CO2 methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: Role of carbon formation as possible deactivation pathway. Applied Catalysis A: General, 2018, 556, 160-171.	4.3	61
22	Synthetic Strategies and Structural Arrangements of Isoreticular Mixed omponent Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 1866-1882.	3.3	58
23	Supported Palladium Catalysts in Heck Coupling Reactions - Problems,Potential and Recent Advances. Current Organic Chemistry, 2006, 10, 1585-1601.	1.6	57
24	Synthesis of Cu Single Atoms Supported on Mesoporous Graphitic Carbon Nitride and Their Application in Liquid-Phase Aerobic Oxidation of Cyclohexene. ACS Catalysis, 2021, 11, 7863-7875.	11.2	56
25	Surface Oxidation of Supported Ni Particles and Its Impact on the Catalytic Performance during Dynamically Operated Methanation of CO2. Catalysts, 2017, 7, 279.	3.5	55
26	Effect of Dehydration on the Local Structure of Framework Aluminum Atoms in Mixed Linker MIL-53(Al) Materials Studied by Solid-State NMR Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 2886-2890.	4.6	54
27	Platinum Nanoparticles: The Crucial Role of Crystal Face and Colloid Stabilizer in the Diastereoselective Hydrogenation of Cinchonidine. Chemistry - A European Journal, 2010, 16, 2181-2192.	3.3	53
28	Heck Reactions of Aryl Chlorides Catalyzed by Ligand Free Palladium Salts. Catalysis Letters, 2008, 125, 197-200.	2.6	49
29	Post-synthetic immobilization of palladium complexes on metal–organic frameworks – a new concept for the design of heterogeneous catalysts for Heck reactions. RSC Advances, 2013, 3, 10676.	3.6	49
30	Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-functionalized metal–organic frameworks based on DUT-5. Dalton Transactions, 2015, 44, 16802-16809.	3.3	48
31	Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates. Applied Catalysis A: General, 2014, 482, 145-156.	4.3	41
32	CuPd Mixed-Metal HKUST-1 as a Catalyst for Aerobic Alcohol Oxidation. Journal of Physical Chemistry C, 2018, 122, 21433-21440.	3.1	40
33	Bismuth Molybdate Catalysts Prepared by Mild Hydrothermal Synthesis: Influence of pH on the Selective Oxidation of Propylene. Catalysts, 2015, 5, 1554-1573.	3.5	38
34	One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein. Chemical Communications, 2014, 50, 15404-15406.	4.1	36
35	Flame-made MgAl2â~'xMxO4 (M=Mn, Fe, Co) mixed oxides: Structural properties and catalytic behavior in methane combustion. Applied Catalysis B: Environmental, 2010, 97, 398-406.	20.2	35
36	Continuous Synthesis of γ-Valerolactone in a Trickle-Bed Reactor over Supported Nickel Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 2680-2689.	3.7	34

WOLFGANG KLEIST

#	Article	IF	CITATIONS
37	Aerobic oxidation of α-pinene catalyzed by homogeneous and MOF-based Mn catalysts. Applied Catalysis A: General, 2017, 546, 1-6.	4.3	33
38	Continuous Catalytic Hydrodeoxygenation of Guaiacol over Pt/SiO2 and Pt/H-MFI-90. Catalysts, 2015, 5, 1152-1166.	3.5	30
39	Reactivity of Bismuth Molybdates for Selective Oxidation of Propylene Probed by Correlative Operando Spectroscopies. ACS Catalysis, 2018, 8, 6462-6475.	11.2	28
40	Enhancing the water splitting performance of cryptomelane-type α-(K)MnO2. Journal of Catalysis, 2019, 374, 335-344.	6.2	27
41	Design of Highly Porous Singleâ€6ite Catalysts through Twoâ€6tep Postsynthetic Modification of Mixedâ€Linker MILâ€53(Al). ChemPlusChem, 2015, 80, 188-195.	2.8	26
42	A simple aqueous phase synthesis of high surface area aluminum fluoride and its bulk and surface structure. Inorganica Chimica Acta, 2006, 359, 4851-4854.	2.4	25
43	Systematic study on the influence of the morphology of α-MoO3 in the selective oxidation of propylene. Journal of Solid State Chemistry, 2015, 228, 42-52.	2.9	24
44	Regulating the size and spatial distribution of Pd nanoparticles supported by the defect engineered metal–organic framework HKUST-1 and applied in the aerobic oxidation of cinnamyl alcohol. Catalysis Science and Technology, 2019, 9, 3703-3710.	4.1	21
45	Pd/MOxMaterials Synthesized by Sol-Gel Coprecipitation as Catalysts for Carbon-Carbon Coupling Reactions of Aryl Bromides and Chlorides. European Journal of Inorganic Chemistry, 2009, 2009, 261-266.	2.0	20
46	Hard X-ray-based techniques for structural investigations of CO ₂ methanation catalysts prepared by MOF decomposition. Nanoscale, 2020, 12, 15800-15813.	5.6	19
47	Amination of aryl chlorides and fluorides toward the synthesis of aromatic amines by palladium-catalyzed route or transition metal free way: Scopes and limitations. Journal of Molecular Catalysis A, 2009, 303, 15-22.	4.8	18
48	Postâ€synthetic Modification of DUTâ€5â€based Metal Organic Frameworks for the Generation of Singleâ€site Catalysts and their Application in Selective Epoxidation Reactions. ChemCatChem, 2020, 12, 1134-1142.	3.7	16
49	Tailoring the breathing behavior of functionalized MIL-53(Al,M)-NH2 materials by using the mixed-metal concept. Microporous and Mesoporous Materials, 2020, 308, 110329.	4.4	15
50	Dynamic transformation of small Ni particles during methanation of CO ₂ under fluctuating reaction conditions monitored by <i>operando</i> X-ray absorption spectroscopy. Journal of Physics: Conference Series, 2016, 712, 012050.	0.4	14
51	Effect of the Addition of Ethanol to Synthesis Gas on the Production of Higher Alcohols over Cs and Ru Modified Cu/ZnO Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 1452-1463.	3.7	11
52	Experimental Evidence for the Incorporation of Two Metals at Equivalent Lattice Positions in Mixedâ€Metal Metal–Organic Frameworks. Chemistry - A European Journal, 2020, 26, 5667-5675.	3.3	9
53	Continuous production of higher alcohols from synthesis gas and ethanol using Cs-modified CuO/ZnO/Al2O3 catalysts. Applied Catalysis A: General, 2019, 585, 117150.	4.3	8
54	Fast and Selective Aqueous-Phase Oxidation of Styrene to Acetophenone Using a Mesoporous Janus-Type Palladium Catalyst. Molecules, 2021, 26, 6450.	3.8	5

WOLFGANG KLEIST

#	Article	IF	CITATIONS
55	Increasing the Complexity in the MILâ€53 Structure: The Combination of the Mixedâ€Metal and the Mixedâ€Linker Concepts. Chemistry - A European Journal, 2021, 27, 1724-1735.	3.3	4
56	Janus bifunctional periodic mesoporous organosilica. Chemical Communications, 2021, 58, 112-115.	4.1	4
57	CHAPTER 6. Hydrodeoxygenation of Lignocellulose-Derived Platform Molecules. RSC Energy and Environment Series, 2014, , 125-150.	0.5	3
58	Oneâ€Step Synthesis of Coreâ€Shellâ€Structured Mixedâ€Metal CPOâ€27(Cu,Co) and Investigations on Its Controlled Thermal Transformation. European Journal of Inorganic Chemistry, 2021, 2021, 2257-2261.	2.0	1
59	The introduction of functional side groups and the application of the mixed-linker concept in divalent MIL-53(Ni) materials. Dalton Transactions, 2020, 49, 9148-9154.	3.3	0
60	Global Challenges in Chemicals and Energies - Standardization and Acceleration of Catalysis R & D. , 2014, , 310-316.		0
61	Structural insights into methanation catalysts from MOF precursors via PDF. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e311-e311.	0.1	0