
Margaret A Knowles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6875869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nature Reviews Cancer, 2015, 15, 25-41.	28.4	928
2	Bladder cancer. Nature Reviews Disease Primers, 2017, 3, 17022.	30.5	590
3	Oncogenic FGFR3 gene fusions in bladder cancer. Human Molecular Genetics, 2013, 22, 795-803.	2.9	329
4	FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene, 2005, 24, 5218-5225.	5.9	295
5	Distinct MicroRNA Alterations Characterize High- and Low-Grade Bladder Cancer. Cancer Research, 2009, 69, 8472-8481.	0.9	291
6	Spectrum of Phosphatidylinositol 3-Kinase Pathway Gene Alterations in Bladder Cancer. Clinical Cancer Research, 2009, 15, 6008-6017.	7.0	235
7	Genomic Subtypes of Non-invasive Bladder Cancer with Distinct Metabolic Profile and Female Gender Bias in KDM6A Mutation Frequency. Cancer Cell, 2017, 32, 701-715.e7.	16.8	224
8	Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese?. Carcinogenesis, 2006, 27, 361-373.	2.8	222
9	DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene, 1997, 15, 403-407.	5.9	190
10	<i>p16 (CDKN2)</i> is a major deletion target at 9p21 in bladder cancer. Human Molecular Genetics, 1995, 4, 1569-1577.	2.9	169
11	A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer. Nature Genetics, 2010, 42, 415-419.	21.4	169
12	An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nature Communications, 2021, 12, 2301.	12.8	159
13	Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urologic Oncology: Seminars and Original Investigations, 2010, 28, 409-428.	1.6	156
14	Affimer proteins are versatile and renewable affinity reagents. ELife, 2017, 6, .	6.0	151
15	Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer and Metastasis Reviews, 2009, 28, 305-316.	5.9	148
16	Loss of RB protein expression in primary bladder cancer correlates with loss of heterozygosity at the RB locus and tumor progression. International Journal of Cancer, 1993, 53, 781-784.	5.1	146
17	Comprehensive Mutation Analysis of the TERT Promoter in Bladder Cancer and Detection of Mutations in Voided Urine. European Urology, 2014, 65, 367-369.	1.9	137
18	High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene, 2004, 23, 2250-2263.	5.9	133

#	Article	IF	CITATIONS
19	Structure and Methylation-Based Silencing of a Gene (DBCCR1) within a Candidate Bladder Cancer Tumor Suppressor Region at 9q32–q33. Genomics, 1998, 48, 277-288.	2.9	124
20	Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene, 1999, 18, 2657-2661.	5.9	119
21	Fibroblast Growth Factor Receptor 1 Promotes Proliferation and Survival via Activation of the Mitogen-Activated Protein Kinase Pathway in Bladder Cancer. Cancer Research, 2009, 69, 4613-4620.	0.9	111
22	Role of FGFR3 in urothelial cell carcinoma: biomarker and potential therapeutic target. World Journal of Urology, 2007, 25, 581-593.	2.2	108
23	Molecular pathogenesis of bladder cancer. International Journal of Clinical Oncology, 2008, 13, 287-297.	2.2	105
24	Parallel RNA Interference Screens Identify EGFR Activation as an Escape Mechanism in <i>FGFR3</i> -Mutant Cancer. Cancer Discovery, 2013, 3, 1058-1071.	9.4	103
25	Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene, 2001, 20, 686-691.	5.9	101
26	A Decade of FGF Receptor Research in Bladder Cancer: Past, Present, and Future Challenges. Advances in Urology, 2012, 2012, 1-10.	1.3	101
27	A SNaPshot assay for the rapid and simple detection of four common hotspot codon mutations in the PIK3CA gene. BMC Research Notes, 2009, 2, 66.	1.4	90
28	Novel Tumor Subgroups of Urothelial Carcinoma of the Bladder Defined by Integrated Genomic Analysis. Clinical Cancer Research, 2012, 18, 5865-5877.	7.0	88
29	Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours. Oncogene, 2001, 20, 4416-4418.	5.9	85
30	Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use. Oncotarget, 2016, 7, 24252-24268.	1.8	83
31	FGFR1-Induced Epithelial to Mesenchymal Transition through MAPK/PLCγ/COX-2-Mediated Mechanisms. PLoS ONE, 2012, 7, e38972.	2.5	82
32	Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Research, 2003, 63, 7652-6.	0.9	79
33	Proteomic studies of urinary biomarkers for prostate, bladder and kidney cancers. Nature Reviews Urology, 2013, 10, 206-218.	3.8	78
34	Deletion mapping of chromosome II in carcinoma of the bladder. Genes Chromosomes and Cancer, 1995, 13, 1-8.	2.8	75
35	A Novel Candidate Tumour Suppressor Locus at 9q32–33 in Bladder Cancer: Localization of the Candidate Region Within a Single 840 kb YAC. Human Molecular Genetics, 1997, 6, 913-919.	2.9	75
36	Hypermethylation at 9q32-33 tumour suppressor region is age-related in normal urothelium and an early and frequent alteration in bladder cancer. Oncogene, 2001, 20, 531-537.	5.9	71

#	Article	IF	CITATIONS
37	Frequent inactivating mutations of STAG2 in bladder cancer are associated with low tumour grade and stage and inversely related to chromosomal copy number changes. Human Molecular Genetics, 2014, 23, 1964-1974.	2.9	71
38	Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Letters, 2005, 225, 121-130.	7.2	70
39	FGFR3 Translocations in Bladder Cancer: Differential Sensitivity to HSP90 Inhibition Based on Drug Metabolism. Molecular Cancer Research, 2014, 12, 1042-1054.	3.4	68
40	Alternative Splicing of Fibroblast Growth Factor Receptor 3 Produces a Secreted Isoform That Inhibits Fibroblast Growth Factor–Induced Proliferation and Is Repressed in Urothelial Carcinoma Cell Lines. Cancer Research, 2005, 65, 10441-10449.	0.9	64
41	Novel therapeutic targets in bladder cancer: mutation and expression of FGF receptors. Future Oncology, 2008, 4, 71-83.	2.4	62
42	The Effect of Mutations on Drug Sensitivity and Kinase Activity of Fibroblast Growth Factor Receptors: A Combined Experimental and Theoretical Study. EBioMedicine, 2015, 2, 194-204.	6.1	60
43	Altered Splicing of FGFR1 Is Associated with High Tumor Grade and Stage and Leads to Increased Sensitivity to FGF1 in Bladder Cancer. American Journal of Pathology, 2010, 177, 2379-2386.	3.8	57
44	Comprehensive Analysis of CDKN2A Status in Microdissected Urothelial Cell Carcinoma Reveals Potential Haploinsufficiency, a High Frequency of Homozygous Co-deletion and Associations with Clinical Phenotype. Clinical Cancer Research, 2005, 11, 5740-5747.	7.0	56
45	TRPA1–FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nature Communications, 2017, 8, 947.	12.8	56
46	Negative regulation of G1/S transition by the candidate bladder tumour suppressor gene DBCCR1. Oncogene, 2001, 20, 2956-2964.	5.9	54
47	Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Human Molecular Genetics, 2008, 17, 2006-2017.	2.9	50
48	The spectrum of TP53 mutations in bladder carcinoma. Genes Chromosomes and Cancer, 1994, 9, 108-118.	2.8	49
49	Oncolytic Immunotherapy for Bladder Cancer Using Coxsackie A21 Virus. Molecular Therapy - Oncolytics, 2018, 9, 1-12.	4.4	49
50	Genome-wide association study yields variants at 20p12.2 that associate with urinary bladder cancer. Human Molecular Genetics, 2014, 23, 5545-5557.	2.9	46
51	Bladder cancer subtypes defined by genomic alterations. Scandinavian Journal of Urology and Nephrology, 2008, 42, 116-130.	1.4	45
52	Genes Involved in Differentiation, Stem Cell Renewal, and Tumorigenesis Are Modulated in Telomerase-Immortalized Human Urothelial Cells. Molecular Cancer Research, 2008, 6, 1154-1168.	3.4	42
53	Expression of Engrailed-2 (EN2) protein in bladder cancer and its potential utility as a urinary diagnostic biomarker. European Journal of Cancer, 2013, 49, 2214-2222.	2.8	41
54	A place for precision medicine in bladder cancer: targeting the FGFRs. Future Oncology, 2016, 12, 2243-2263.	2.4	39

#	Article	IF	CITATIONS
55	Fibroblast Growth Factors and Their Receptors in Transitional Cell Carcinoma. Journal of Urology, 2003, 169, 675-682.	0.4	38
56	Report From the International Society of Urological Pathology (ISUP) Consultation Conference On Molecular Pathology Of Urogenital Cancers. II. Molecular Pathology of Bladder Cancer. American Journal of Surgical Pathology, 2020, 44, e30-e46.	3.7	38
57	Identification and Characterization of the Human Homologue of SH3BP2, an SH3 Binding Domain Protein within a Common Region of Deletion at 4p16.3 Involved in Bladder Cancer. Genomics, 1997, 44, 163-170.	2.9	37
58	Molecular genetic analysis of chromosome 9 candidate tumorâ€suppressor loci in bladder cancer cell lines. Genes Chromosomes and Cancer, 2002, 34, 86-96.	2.8	35
59	Homozygous deletion at the 9q32-33 candidate tumor suppressor locus in primary human bladder cancer. Genes Chromosomes and Cancer, 1999, 26, 171-175.	2.8	34
60	Identification of novel bladder tumour suppressor genes. Electrophoresis, 1999, 20, 269-279.	2.4	33
61	Molecular Subtyping of Invasive Bladder Cancer: Time to Divide and Rule?. Cancer Cell, 2014, 25, 135-136.	16.8	33
62	<i>FGFR3</i> mutation increases bladder tumourigenesis by suppressing acute inflammation. Journal of Pathology, 2018, 246, 331-343.	4.5	33
63	Two novel regions of interstitial deletion on chromosome 8p in colorectal cancer. Oncogene, 1999, 18, 657-665.	5.9	32
64	TERT Core Promotor Mutations in Early-Onset Bladder Cancer. Journal of Cancer, 2016, 7, 915-920.	2.5	31
65	Mutational landscape of non-muscle-invasive bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2022, 40, 295-303.	1.6	31
66	Summary and Recommendations from the National Cancer Institute's Clinical Trials Planning Meeting on Novel Therapeutics for Non-Muscle Invasive Bladder Cancer. Bladder Cancer, 2016, 2, 165-202.	0.4	30
67	Mutation analysis of 8p genes POLB and PPP2CB in bladder cancer. Cancer Genetics and Cytogenetics, 1997, 93, 167-171.	1.0	28
68	SnapShot: Bladder Cancer. Cancer Cell, 2018, 34, 350-350.e1.	16.8	27
69	Loss of heterozygosity analysis and DNA copy number measurement on 8p in bladder cancer reveals two mechanisms of allelic loss. Cancer Research, 2005, 65, 66-75.	0.9	27
70	Measurement of Relative Copy Number of CDKN2A/ARF and CDKN2B in Bladder Cancer by Real-Time Quantitative PCR and Multiplex Ligation-Dependent Probe Amplification. Journal of Molecular Diagnostics, 2004, 6, 356-365.	2.8	26
71	FGFR3 Expression in Primary Invasive Bladder Cancers and Matched Lymph Node Metastases. Journal of Urology, 2015, 193, 325-330.	0.4	26
72	Infrequent mutation of TRAIL receptor 2 (TRAIL-R2/DR5) in transitional cell carcinoma of the bladder with 8p21 loss of heterozygosity. Cancer Letters, 2005, 220, 137-144.	7.2	24

MARGARET A KNOWLES

#	Article	IF	CITATIONS
73	Highâ€resolution analysis of genomic alteration on chromosome arm 8p in urothelial carcinoma. Genes Chromosomes and Cancer, 2010, 49, 642-659.	2.8	23
74	Fibroblast growth factor receptor (FGFR) alterations in squamous differentiated bladder cancer: a putative therapeutic target for a small subgroup. Oncotarget, 2016, 7, 71429-71439.	1.8	23
75	Urological malignancies and the proteomic-genomic interface. Electrophoresis, 1999, 20, 3629-3637.	2.4	22
76	Multi-omic profiling refines the molecular view. Nature Reviews Clinical Oncology, 2018, 15, 203-204.	27.6	22
77	Fluorescence in situ hybridization deletion mapping at 4p16.3 in bladder cancer cell lines refines the localisation of the critical interval to 30 kb. Genes Chromosomes and Cancer, 1996, 17, 108-117.	2.8	20
78	Integrated genomic and transcriptional analysis of the in vitro evolution of telomeraseâ€immortalized urothelial cells (TERTâ€NHUC). Genes Chromosomes and Cancer, 2009, 48, 694-710.	2.8	20
79	The Warburg effect as a therapeutic target for bladder cancers and intratumoral heterogeneity in associated molecular targets. Cancer Science, 2021, 112, 3822-3834.	3.9	19
80	Alteration of Cell–Cell and Cell–Matrix Adhesion in Urothelial Cells: An Oncogenic Mechanism for Mutant FGFR3. Molecular Cancer Research, 2015, 13, 138-148.	3.4	18
81	Dysregulation at multiple points of the kynurenine pathway is a ubiquitous feature of renal cancer: implications for tumour immune evasion. British Journal of Cancer, 2020, 123, 137-147.	6.4	17
82	A Sequence-Ready 840-kb PAC Contig Spanning the Candidate Tumor Suppressor Locus DBC1 on Human Chromosome 9q32–q33. Genomics, 1999, 59, 335-338.	2.9	16
83	Assessing the quality of studies on the diagnostic accuracy of tumor markers. Urologic Oncology: Seminars and Original Investigations, 2014, 32, 1051-1060.	1.6	16
84	Identification of Mutations in Distinct Regions of p85 Alpha in Urothelial Cancer. PLoS ONE, 2013, 8, e84411.	2.5	16
85	From Fragment to Lead: De Novo Design and Development toward a Selective FGFR2 Inhibitor. Journal of Medicinal Chemistry, 2022, 65, 1481-1504.	6.4	16
86	ETV5 links the FGFR3 and Hippo signalling pathways in bladder cancer. Scientific Reports, 2019, 9, 5740.	3.3	15
87	Assessment by Mâ€FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro. Genes Chromosomes and Cancer, 2005, 43, 315-328.	2.8	14
88	Identification of an Indazole-Based Pharmacophore for the Inhibition of FGFR Kinases Using Fragment-Led <i>de Novo</i> Design. ACS Medicinal Chemistry Letters, 2017, 8, 1264-1268.	2.8	13
89	Stage-stratified molecular profiling of non-muscle-invasive bladder cancer enhances biological, clinical, and therapeutic insight. Cell Reports Medicine, 2021, 2, 100472.	6.5	13
90	The Lund Molecular Taxonomy Applied to Non–Muscle-Invasive Urothelial Carcinoma. Journal of Molecular Diagnostics, 2022, 24, 992-1008.	2.8	13

#	Article	IF	CITATIONS
91	An integrated genomic, transcriptional and protein investigation of <i>FGFRL1</i> as a putative 4p16.3 deletion target in bladder cancer. Genes Chromosomes and Cancer, 2013, 52, 860-871.	2.8	12
92	Towards a Next-Generation Sequencing Diagnostic Service for Tumour Genotyping: A Comparison of Panels and Platforms. BioMed Research International, 2015, 2015, 1-6.	1.9	12
93	Patient-derived mutations within the N-terminal domains of p85α impact PTEN or Rab5 binding and regulation. Scientific Reports, 2018, 8, 7108.	3.3	12
94	Monitoring of urothelial cancer disease status after treatment by digital droplet PCR liquid biopsy assays. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 737.e1-737.e10.	1.6	12
95	Summary of the 8th Annual Bladder Cancer Think Tank: Collaborating to move research forward. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 53-64.	1.6	11
96	In vitro functional effects of XPC gene rare variants from bladder cancer patients. Carcinogenesis, 2011, 32, 516-521.	2.8	10
97	Affimer-based impedimetric biosensors for fibroblast growth factor receptor 3 (FGFR3): a novel tool for detection and surveillance of recurrent bladder cancer. Sensors and Actuators B: Chemical, 2021, 326, 128829.	7.8	10
98	Unique signalling connectivity of FGFR3-TACC3 oncoprotein revealed by quantitative phosphoproteomics and differential network analysis. Oncotarget, 2017, 8, 102898-102911.	1.8	10
99	Fibroblast growth factors and their receptors in transitional cell carcinoma. Journal of Urology, 2003, 169, 675-82.	0.4	9
100	Genomics: a preview of genomic medicine. BJU International, 2008, 102, 1221-1227.	2.5	8
101	FGFR3 – a Central Player in Bladder Cancer Pathogenesis?. Bladder Cancer, 2020, 6, 403-423.	0.4	7
102	Modeling the mechanical stiffness of pancreatic ductal adenocarcinoma. Matrix Biology Plus, 2022, 14, 100109.	3.5	7
103	Polycomb Repressor Complex 1 Member, BMI1 Contributes to Urothelial Tumorigenesis through p16-Independent Mechanisms. Translational Oncology, 2015, 8, 387-399.	3.7	6
104	Use of Aleuria alantia Lectin Affinity Chromatography to Enrich Candidate Biomarkers from the Urine of Patients with Bladder Cancer. Proteomes, 2015, 3, 266-282.	3.5	5
105	A simple method for detecting oncofetal chondroitin sulfate glycosaminoglycans in bladder cancer urine. Cell Death Discovery, 2020, 6, 65.	4.7	5
106	Redefining a critical region of LOH on 4p16.3 in bladder cancer. Genes Chromosomes and Cancer, 2000, 29, 378-379.	2.8	4
107	FIESTA: A phase Ib and pharmacokinetic trial of AZD4547 in combination with gemcitabine and cisplatin Journal of Clinical Oncology, 2016, 34, 4521-4521.	1.6	4
108	Urothelial Carcinoma. Advances in Urology, 2012, 2012, 1-2.	1.3	2

MARGARET A KNOWLES

#	Article	IF	CITATIONS
109	Urological malignancies and the proteomic-genomic interface. Electrophoresis, 1999, 20, 3629-3637.	2.4	2
110	Abstract 2240: TERT promoter mutations are highly prevalent in bladder cancer and represent a potential new urinary biomarker. , 2014, , .		2
111	Abstract 3991: Novel small molecule inhibitors of p300/CBP down-regulate androgen receptor (AR) and c-Myc for the treatment of prostate cancer and beyond. , 2018, , .		2
112	Identification of novel bladder tumour suppressor genes. Electrophoresis, 1999, 20, 269-279.	2.4	1
113	Molecular profile of pure squamous cell carcinoma of the bladder identifies major roles for <scp>OSMR</scp> and <scp>YAP</scp> signalling. Journal of Pathology: Clinical Research, 2022, 8, 279-293.	3.0	1
114	Improved measurement of p16 and p14ARF gene dosage in bladder tumours by quantitative real time PCR. European Urology Supplements, 2003, 2, 35.	0.1	0
115	MP28-20 PATHOLOGICAL VALIDATION OF ADJUVANT ANTI - FIBROBLAST GROWTH FACTOR RECEPTOR 3 (FGFR3) FOR PERSONALIZED TREATMENT OF BLADDER CANCER. Journal of Urology, 2014, 191, .	0.4	0
116	Abstract LB-152: PIK3CA mutation spectrum in urothelial carcinoma reflects cell context-dependent signalling and phenotypic outputs. , 2012, , .		0
117	Abstract 5310: Activation of FGFR3 by genomic fusion in urothelial carcinoma of the bladder , 2013, , .		0
118	Abstract C130: The Hsp90 inhibitor ganetespib promotes the degradation of FGFR3 in bladder cancer models and induces regression in tumors harboring oncogenic FGFR3 fusions , 2013, , .		0
119	Abstract 5256: Mechanism of field cancerization. , 2014, , .		0
120	ToTem: A phase lb trial of temisirolimus with gemcitabine and cisplatin Journal of Clinical Oncology, 2016, 34, e16032-e16032.	1.6	0
121	Abstract LB-323: The genomic landscape of non-muscle-invasive bladder cancer: implications for molecular classification and treatment. , 2016, , .		0