
Michael P Coleman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6871458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Axon degeneration mechanisms: commonality amid diversity. Nature Reviews Neuroscience, 2005, 6, 889-898.	10.2	718
2	Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nature Neuroscience, 2001, 4, 1199-1206.	14.8	661
3	dSarm/Sarm1 Is Required for Activation of an Injury-Induced Axon Death Pathway. Science, 2012, 337, 481-484.	12.6	558
4	Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nature Reviews Neuroscience, 2014, 15, 394-409.	10.2	475
5	Wallerian Degeneration, Wld ^S , and Nmnat. Annual Review of Neuroscience, 2010, 33, 245-267.	10.7	415
6	Endogenous Nmnat2 Is an Essential Survival Factor for Maintenance of Healthy Axons. PLoS Biology, 2010, 8, e1000300.	5.6	403
7	Axon pathology in neurological disease: a neglected therapeutic target. Trends in Neurosciences, 2002, 25, 532-537.	8.6	361
8	NAD ⁺ cleavage activity by animal and plant TIR domains in cell death pathways. Science, 2019, 365, 793-799.	12.6	357
9	The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neuroscience, 2005, 6, 6.	1.9	235
10	Inhibiting Axon Degeneration and Synapse Loss Attenuates Apoptosis and Disease Progression in a Mouse Model of Motoneuron Disease. Current Biology, 2003, 13, 669-673.	3.9	208
11	Programmed axon degeneration: from mouse to mechanism to medicine. Nature Reviews Neuroscience, 2020, 21, 183-196.	10.2	208
12	Mitochondria as a central sensor for axonal degenerative stimuli. Trends in Neurosciences, 2012, 35, 364-372.	8.6	181
13	Absence of SARM1 Rescues Development and Survival of NMNAT2-Deficient Axons. Cell Reports, 2015, 10, 1974-1981.	6.4	168
14	Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain, 2009, 132, 402-416.	7.6	147
15	The <i>Wld</i> ^{<i>s</i>} Mutation Delays Robust Loss of Motor and Sensory Axons in a Genetic Model for Myelin-Related Axonopathy. Journal of Neuroscience, 2003, 23, 2833-2839.	3.6	145
16	The <i>Wld</i> ^S gene delays axonal but not somatic degeneration in a rat glaucoma model. European Journal of Neuroscience, 2008, 28, 1166-1179.	2.6	128
17	Targeting NMNAT1 to Axons and Synapses Transforms Its Neuroprotective Potency <i>In Vivo</i> . Journal of Neuroscience, 2010, 30, 13291-13304.	3.6	108
18	Lipopolysaccharide-induced neuroinflammation induces presynaptic disruption through a direct action on brain tissue involving microglia-derived interleukin 1 beta. Journal of Neuroinflammation, 2019, 16, 106	7.2	108

MICHAEL P COLEMAN

#	Article	IF	CITATIONS
19	Rescue of Peripheral and CNS Axon Defects in Mice Lacking NMNAT2. Journal of Neuroscience, 2013, 33, 13410-13424.	3.6	107
20	The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiology of Disease, 2005, 19, 293-300.	4.4	104
21	The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice. Brain, 2004, 128, 405-416.	7.6	101
22	Subcellular Localization Determines the Stability and Axon Protective Capacity of Axon Survival Factor Nmnat2. PLoS Biology, 2013, 11, e1001539.	5.6	101
23	WldS protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. Journal of Cell Biology, 2009, 184, 491-500.	5.2	100
24	Quantitative and qualitative analysis of Wallerian degeneration using restricted axonal labelling in YFP-H mice. Journal of Neuroscience Methods, 2004, 134, 23-35.	2.5	99
25	Sarm1 Deletion, but Not Wld S , Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy. Cell Reports, 2017, 21, 10-16.	6.4	97
26	Mechanisms of Axonal Spheroid Formation in Central Nervous System Wallerian Degeneration. Journal of Neuropathology and Experimental Neurology, 2010, 69, 455-472.	1.7	90
27	Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiology of Disease, 2020, 134, 104678.	4.4	87
28	NMN Deamidase Delays Wallerian Degeneration and Rescues Axonal Defects Caused by NMNAT2 Deficiency InÂVivo. Current Biology, 2017, 27, 784-794.	3.9	86
29	A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses. European Journal of Neuroscience, 2005, 21, 271-277.	2.6	81
30	Axonal transport declines with age in two distinct phases separated by a period of relative stability. Neurobiology of Aging, 2015, 36, 971-981.	3.1	79
31	Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a "P301L―tau knockin mouse. Neurobiology of Aging, 2012, 33, 621.e1-621.e15.	3.1	75
32	Reducing expression of NAD ⁺ synthesizing enzyme NMNAT1 does not affect the rate of Wallerian degeneration. FEBS Journal, 2011, 278, 2666-2679.	4.7	71
33	Difference Tracker: ImageJ plugins for fully automated analysis of multiple axonal transport parameters. Journal of Neuroscience Methods, 2010, 193, 281-287.	2.5	65
34	Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathologica Communications, 2019, 7, 166.	5.2	60
35	Synaptophysin depletion and intraneuronal Aî² in organotypic hippocampal slice cultures from huAPP transgenic mice. Molecular Neurodegeneration, 2016, 11, 44.	10.8	55
36	SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. IScience, 2022, 25, 103812.	4.1	52

MICHAEL P COLEMAN

#	Article	IF	CITATIONS
37	Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Experimental Neurology, 2019, 320, 112958.	4.1	48
38	Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Experimental Neurology, 2019, 320, 112961.	4.1	46
39	Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Nature Chemical Biology, 2020, 16, 1227-1236.	8.0	46
40	Low levels of NMNAT2 compromise axon development and survival. Human Molecular Genetics, 2019, 28, 448-458.	2.9	44
41	Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders. ELife, 2021, 10, .	6.0	44
42	Deletions within its subcellular targeting domain enhance the axon protective capacity of Nmnat2 in vivo. Scientific Reports, 2013, 3, 2567.	3.3	36
43	Simultaneous Single-Sample Determination of NMNAT Isozyme Activities in Mouse Tissues. PLoS ONE, 2012, 7, e53271.	2.5	36
44	Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Neurotherapeutics, 2021, 18, 2200-2221.	4.4	33
45	Mitochondrial dysfunction as a trigger of programmed axon death. Trends in Neurosciences, 2022, 45, 53-63.	8.6	32
46	ldentification of Palmitoyltransferase and Thioesterase Enzymes That Control the Subcellular Localization of Axon Survival Factor Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2). Journal of Biological Chemistry, 2014, 289, 32858-32870.	3.4	29
47	Axonal trafficking of NMNAT2 and its roles in axon growth and survival in vivo. Bioarchitecture, 2013, 3, 133-140.	1.5	28
48	<scp>KIF1A</scp> mediates axonal transport of <scp>BACE1</scp> and identification of independently moving cargoes in living <scp>SCG</scp> neurons. Traffic, 2016, 17, 1155-1167.	2.7	28
49	A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity. Frontiers in Molecular Biosciences, 2021, 8, 703532.	3.5	28
50	Novel HDAC6 Inhibitors Increase Tubulin Acetylation and Rescue Axonal Transport of Mitochondria in a Model of Charcot–Marie–Tooth Type 2F. ACS Chemical Neuroscience, 2020, 11, 258-267.	3.5	24
51	Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death and Disease, 2020, 11, 98.	6.3	23
52	Alzheimer's Disease: Etiology, Neuropathology and Pathogenesis. , 0, , 1-22.		22
53	Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1. ELife, 2021, 10, .	6.0	22
54	Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport. Neurobiology of Aging, 2018, 68, 68-75.	3.1	17

MICHAEL P COLEMAN

#	Article	IF	CITATIONS
55	Tau assemblies do not behave like independently acting prion-like particles in mouse neural tissue. Acta Neuropathologica Communications, 2021, 9, 41.	5.2	15
56	Sarm1 haploinsufficiency or low expression levels after antisense oligonucleotides delay programmed axon degeneration. Cell Reports, 2021, 37, 110108.	6.4	15
57	Application of virtual screening to the discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with potential for the treatment of cancer and axonopathies. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2920-2926.	2.2	13
58	Loss of highwire Protects Against the Deleterious Effects of Traumatic Brain Injury in Drosophila Melanogaster. Frontiers in Neurology, 2020, 11, 401.	2.4	13
59	SARM1 Depletion Slows Axon Degeneration in a CNS Model of Neurotropic Viral Infection. Frontiers in Molecular Neuroscience, 2022, 15, 860410.	2.9	8
60	Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport. Journal of Anatomy, 0, , .	1.5	4
61	<i>Sarm1</i> Haploinsufficiency and Low Expression Levels after Antisense Oligonucleotides Delays Programmed Axon Degeneration. SSRN Electronic Journal, 0, , .	0.4	2
62	Imaging Axonal Transport in Ex Vivo Central and Peripheral Nerves. Methods in Molecular Biology, 2022, 2431, 73-93.	0.9	2
63	Axon Degeneration: Which Method to Choose?. Methods in Molecular Biology, 2020, 2143, 3-12.	0.9	0