Davide Ferri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6871455/publications.pdf

Version: 2024-02-01

		36303		66911
182	7,938	51		78
papers	citations	h-index		g-index
			_ '	
191	191	191		7405
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	One-pot synthesis of highly dispersed mesoporous Cu/ZrO2 catalysts for NH3-SCR. Catalysis Today, 2022, 384-386, 113-121.	4.4	13
2	Effect of Pt Particle Size and Phosphorous Addition on Furfural Hydrogenation Over Pt/Al2O3. Catalysis Letters, 2022, 152, 980-990.	2.6	3
3	Effect of an Al2O3-based binder on the structure of extruded Fe-ZSM-5. Catalysis Today, 2022, 387, 207-215.	4.4	2
4	Experimental and modeling-based analysis of reaction pathways on catalysts for natural gas engines under periodic lean/rich oscillations. Chemical Engineering Journal, 2022, 430, 132848.	12.7	2
5	Restructuring Ni/Al2O3 by addition of Ga to shift product selectivity in CO2 hydrogenation: The role of hydroxyl groups. Journal of CO2 Utilization, 2022, 57, 101881.	6.8	6
6	Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nature Communications, 2022, 13, 324.	12.8	69
7	Gas phase <i>vs.</i> liquid phase: monitoring H ₂ and CO adsorption phenomena on Pt/Al ₂ O ₃ by IR spectroscopy. Catalysis Science and Technology, 2022, 12, 1359-1367.	4.1	5
8	Interconversion between Lewis and Brønsted–Lowry acid sites on vanadia-based catalysts. Physical Chemistry Chemical Physics, 2022, 24, 4555-4561.	2.8	6
9	Investigation on the Role of Pd, Pt, Rh in Methane Abatement for Heavy Duty Applications. Catalysts, 2022, 12, 373.	3.5	4
10	<i>In situ</i> spectroscopic studies of the effect of water on the redox cycle of Cu ions in Cu-SSZ-13 during selective catalytic reduction of NO _{<i>x</i>} . Chemical Communications, 2022, 58, 6610-6613.	4.1	12
11	In Situ Infrared Spectroscopy of NO _{<i>x</i>} Reduction Catalysts: A Laboratory Exercise for In-Person and Virtual Learning. Journal of Chemical Education, 2022, 99, 2649-2655.	2.3	3
12	HCN production from formaldehyde during the selective catalytic reduction of NOx with NH3 over V2O5/WO3-TiO2. Applied Catalysis B: Environmental, 2021, 281, 119462.	20.2	21
13	Changes of Pd Oxidation State in Pd/Al2O3 Catalysts Using Modulated Excitation DRIFTS. Catalysts, 2021, 11, 116.	3.5	6
14	Effect of Short Reducing Pulses on the Dynamic Structure, Activity, and Stability of Pd/Al ₂ O ₃ for Wet Lean Methane Oxidation. ACS Catalysis, 2021, 11, 4870-4879.	11.2	19
15	Stable Palladium Oxide Clusters Encapsulated in Silicalite-1 for Complete Methane Oxidation. ACS Catalysis, 2021, 11, 7371-7382.	11.2	34
16	Reduction of PdO/Al ₂ O ₃ in Liquid Cyclohexane Followed <i>In Situ</i> by ATR-IR, High-Energy XRD, and XAS. Journal of Physical Chemistry C, 2021, 125, 16473-16482.	3.1	7
17	On the relevance of P poisoning in real-world DOC aging. Applied Catalysis B: Environmental, 2021, 291, 120062.	20.2	9
18	Structured Alumina Substrates for Environmental Catalysis Produced by Stereolithography. Applied Sciences (Switzerland), 2021, 11, 8239.	2.5	5

#	Article	IF	Citations
19	Reaction pathways of methane abatement in Pd-Rh three-way catalyst in heavy duty applications: A combined approach based on exhaust analysis, model gas reactor and DRIFTS measurements. Chemical Engineering Journal, 2021, 422, 129932.	12.7	12
20	Understanding the impact of poison distribution on the performance of Diesel oxidation catalysts. Applied Catalysis B: Environmental, 2021, 299, 120684.	20.2	8
21	Operando diffuse reflectance infrared detection of cyanide intermediate species during the reaction of formaldehyde with ammonia over V2O5/WO3-TiO2. Applied Catalysis B: Environmental, 2021, 298, 120629.	20.2	8
22	Structure and performance of zeolite supported Pd for complete methane oxidation. Catalysis Today, 2021, 382, 3-12.	4.4	24
23	Deactivation of Industrial Pd/Al ₂ O ₃ Catalysts by Ethanol: A Spectroscopic Study. ChemCatChem, 2021, 13, 900-908.	3.7	5
24	Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis. Nature Communications, 2021, 12, 7096.	12.8	33
25	Increased nickel exsolution from LaFe0.8Ni0.2O3 perovskite-derived CO2 methanation catalysts through strontium doping. Applied Catalysis A: General, 2020, 590, 117328.	4.3	13
26	Detection of key transient Cu intermediates in SSZ-13 during NH ₃ -SCR deNO _x by modulation excitation IR spectroscopy. Chemical Science, 2020, 11, 447-455.	7.4	52
27	<i>In situ</i> study of metal leaching from Pd/Al ₂ O ₃ induced by K ₂ CO ₃ . Catalysis Science and Technology, 2020, 10, 466-474.	4.1	14
28	Selective Catalytic Reduction of NO with NH ₃ on Cuâ^'SSZâ€13: Deciphering the Low and Highâ€temperature Rateâ€limiting Steps by Transient XAS Experiments. ChemCatChem, 2020, 12, 1429-1435.	3.7	39
29	Catalysis by Metals on Perovskite-Type Oxides. Catalysts, 2020, 10, 1062.	3 . 5	2
30	Fluorescence-detected quick-scanning X-ray absorption spectroscopy. Journal of Synchrotron Radiation, 2020, 27, 681-688.	2.4	31
31	Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium-Equipped Porous Organic Polymers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50550-50565.	8.0	55
32	CuO/La _{0.5} Sr _{0.5} CoO ₃ : precursor of efficient NO reduction catalyst studied by <i>operando</i> high energy X-ray diffraction under three-way catalytic conditions. Physical Chemistry Chemical Physics, 2020, 22, 18798-18805.	2.8	3
33	Water Inhibition of Oxymethylene Dimethyl Ether Synthesis over Zeolite H-Beta: A Combined Kinetic and <i>in Situ</i>	11.2	20
34	Pd-LaFeO ₃ Catalysts in Aqueous Ethanol: Pd Reduction, Leaching, and Structural Transformations in the Presence of a Base. ACS Catalysis, 2020, 10, 3933-3944.	11.2	6
35	Influence of CO on Dry CH4 Oxidation on Pd/Al2O3 by Operando Spectroscopy: A Multitechnique Modulated Excitation Study. ACS Catalysis, 2020, 10, 4791-4804.	11.2	16
36	Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural. RSC Advances, 2020, 10, 11507-11516.	3.6	15

#	Article	IF	Citations
37	Design of a Reactor Cell for Modulated Excitation Raman and DiffuseÂReflectance Studies of Selective Catalytic Reduction Catalysts. Emission Control Science and Technology, 2019, 5, 307-316.	1.5	13
38	Design of Stable Palladium-Based Zeolite Catalysts for Complete Methane Oxidation by Postsynthesis Zeolite Modification. ACS Catalysis, 2019, 9, 2303-2312.	11.2	82
39	Modulated Excitation Raman Spectroscopy of V ₂ O ₅ /TiO ₂ : Mechanistic Insights into the Selective Catalytic Reduction of NO with NH ₃ . ACS Catalysis, 2019, 9, 6814-6820.	11.2	56
40	Segregation of Nickel/Iron Bimetallic Particles from Lanthanum Doped Strontium Titanates to Improve Sulfur Stability of Solid Oxide Fuel Cell Anodes. Catalysts, 2019, 9, 332.	3.5	3
41	Nickel incorporation in perovskite-type metal oxides – Implications on reducibility. Acta Materialia, 2019, 164, 568-576.	7.9	19
42	Sulfur Poisoning Recovery on a Solid Oxide Fuel Cell Anode Material through Reversible Segregation of Nickel. Chemistry of Materials, 2019, 31, 748-758.	6.7	36
43	Thermal activation and aging of a V2O5/WO3-TiO2 catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis A: General, 2019, 573, 64-72.	4.3	25
44	Mechanistic implications of lanthanum-modification on gold-catalyzed formic acid decomposition under SCR-relevant conditions. Applied Catalysis B: Environmental, 2019, 244, 709-718.	20.2	6
45	Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3. Catalysis Today, 2019, 320, 123-132.	4.4	21
46	Energy Conversion Processes with Perovskite-type Materials. Chimia, 2019, 73, 913.	0.6	0
47	Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nature Catalysis, 2018, 1, 221-227.	34.4	186
48	Structural Reversibility of LaCo _{1â€<i>x</i>} Cu _{<i>x</i>} O ₃ Followed by <i>In Situ</i> Xâ€ray Diffraction and Absorption Spectroscopy. ChemPhysChem, 2018, 19, 1876-1885.	2.1	9
49	In situ attenuated total reflection infrared spectroscopy study of the photocatalytic steam reforming of methanol on Pt/TiO2. Applied Surface Science, 2018, 450, 146-154.	6.1	34
50	Methane oxidation over a honeycomb Pd-only three-way catalyst under static and periodic operation. Applied Catalysis B: Environmental, 2018, 220, 67-77.	20.2	67
51	Mitigation of Secondary Organic Aerosol Formation from Log Wood Burning Emissions by Catalytic Removal of Aromatic Hydrocarbons. Environmental Science & Environmental Science & 2018, 52, 13381-13390.	10.0	10
52	Stable complete methane oxidation over palladium based zeolite catalysts. Nature Communications, 2018, 9, 2545.	12.8	187
53	Reversible Segregation of Ni in LaFe 0.8 Ni 0.2 O 3± δ During Coke Removal. ChemCatChem, 2018, 10, 4456-4464.	3.7	15
54	Preferential oxidation of CO on a La-Co-Ru perovskite-type oxide catalyst. Catalysis Communications, 2017, 92, 75-79.	3.3	8

#	Article	IF	Citations
55	Increasing the Sensitivity to Short-Lived Species in a Modulated Excitation Experiment. Analytical Chemistry, 2017, 89, 5801-5809.	6.5	21
56	High energy X-ray diffraction and IR spectroscopy of Pt/Al2O3 during CO oxidation in a novel catalytic reactor cell. Journal of Lithic Studies, 2017, 3, 71-78.	0.5	17
57	Water-assisted oxygen activation during gold-catalyzed formic acid decomposition under SCR-relevant conditions. Journal of Catalysis, 2017, 349, 197-207.	6.2	11
58	Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskiteâ€Type Catalysts. ChemSusChem, 2017, 10, 2505-2517.	6.8	52
59	Genesis of a Co–Salicylaldimine Complex on Silica Followed in Situ by FTIR and XAS. ChemPhysChem, 2017, 18, 2835-2839.	2.1	1
60	Relationship between structures and activities of supported metal vanadates for the selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2017, 218, 731-742.	20.2	72
61	Deactivation Aspects of Methane Oxidation Catalysts Based on Palladium and ZSM-5. Topics in Catalysis, 2017, 60, 123-130.	2.8	34
62	The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadiumâ€Based Catalysts. Angewandte Chemie, 2016, 128, 12168-12173.	2.0	22
63	Operando Synchrotron Xâ€ray Powder Diffraction and Modulatedâ€Excitation Infrared Spectroscopy Elucidate the CO ₂ Promotion on a Commercial Methanol Synthesis Catalyst. Angewandte Chemie - International Edition, 2016, 55, 11031-11036.	13.8	64
64	Kinetic Studies of the Pt Carbonate-Mediated, Room-Temperature Oxidation of Carbon Monoxide by Oxygen over Pt/Al ₂ O ₃ Using Combined, Time-Resolved XAFS, DRIFTS, and Mass Spectrometry. Journal of the American Chemical Society, 2016, 138, 13930-13940.	13.7	38
65	An operando emission spectroscopy study of Pt/Al ₂ O ₃ and Pt/CeO ₂ /Al ₂ O ₃ . Physical Chemistry Chemical Physics, 2016, 18, 29268-29277.	2.8	12
66	The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadiumâ€Based Catalysts. Angewandte Chemie - International Edition, 2016, 55, 11989-11994.	13.8	228
67	Operando Synchrotron Xâ€ray Powder Diffraction and Modulatedâ€Excitation Infrared Spectroscopy Elucidate the CO ₂ Promotion on a Commercial Methanol Synthesis Catalyst. Angewandte Chemie, 2016, 128, 11197-11202.	2.0	51
68	Smart material concept: reversible microstructural self-regeneration for catalytic applications. Journal of Materials Chemistry A, 2016, 4, 11939-11948.	10.3	72
69	Selectivity Control in Palladium-Catalyzed Alcohol Oxidation through Selective Blocking of Active Sites. Journal of Physical Chemistry C, 2016, 120, 14027-14033.	3.1	50
70	Structural Modification of Ni∫γâ€Al ₂ O ₃ with Boron for Enhanced Carbon Resistance during CO Methanation. ChemCatChem, 2015, 7, 3261-3265.	3.7	11
71	Operando Attenuated Total Reflectance FTIR Spectroscopy: Studies on the Different Selectivity Observed in Benzyl Alcohol Oxidation. ChemCatChem, 2015, 7, 2534-2541.	3.7	23
72	VOx Surface Coverage Optimization of V2O5/WO3-TiO2 SCR Catalysts by Variation of the V Loading and by Aging. Catalysts, 2015, 5, 1704-1720.	3.5	82

#	Article	IF	CITATIONS
73	Generation of NH ₃ Selective Catalytic Reduction Active Catalysts from Decomposition of Supported FeVO ₄ . ACS Catalysis, 2015, 5, 4180-4188.	11.2	64
74	Modulated excitation extended X-ray absorption fine structure spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 10579-10591.	2.8	33
75	DRIFTS study of a commercial Ni/ \hat{I}^3 -Al 2 O 3 CO methanation catalyst. Applied Catalysis A: General, 2015, 495, 104-114.	4.3	40
76	Promotion of Ammonium Formate and Formic Acid Decomposition over Au/TiO2 by Support Basicity under SCR-Relevant Conditions. ACS Catalysis, 2015, 5, 4772-4782.	11.2	15
77	Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nature Communications, 2015, 6, 8675.	12.8	79
78	WOâ, f /CeOâ,,/TiOâ,, Catalysts for Selective Catalytic Reduction of NOx by NHâ, f : Effect of the Synthesis Method. Chimia, 2015, 69, 220.	0.6	12
79	Pd Loading and Structure of Flame-Made Pd/YFeO3±δ. Topics in Catalysis, 2015, 58, 910-918.	2.8	4
80	Flame-Made WO ₃ /CeO _{<i>x</i>} -TiO ₂ Catalysts for Selective Catalytic Reduction of NO _{<i>x</i>} by NH ₃ . ACS Catalysis, 2015, 5, 5657-5672.	11.2	171
81	Manipulating the reaction path of the CO ₂ hydrogenation reaction in molecular sieves. Catalysis Science and Technology, 2015, 5, 4613-4621.	4.1	36
82	Phase transitions of BaTi0.9Rh0.1O3 \hat{A}_{\pm} perovskite-type oxides under reducing environments. Materials Research Bulletin, 2015, 61, 130-135.	5.2	4
83	Adding diffuse reflectance infrared Fourier transform spectroscopy capability to extended x-ray-absorption fine structure in a new cell to study solid catalysts in combination with a modulation approach. Review of Scientific Instruments, 2014, 85, 074102.	1.3	71
84	Catalytic Adventures in Space and Time Using High Energy X-rays. Catalysis Surveys From Asia, 2014, 18, 134-148.	2.6	9
85	Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters—A Review. Catalysts, 2014, 4, 226-255.	3.5	125
86	Methane abatement under stoichiometric conditions on perovskite-supported palladium catalysts prepared by flame spray synthesis. Applied Catalysis B: Environmental, 2014, 144, 631-643.	20.2	32
87	Advances in the use of X-rays for the characterization of functional catalytic materials. Catalysis Today, 2014, 229, 1.	4.4	1
88	Dynamic Surface Processes of Nanostructured Pd2Ga Catalysts Derived from Hydrotalcite-Like Precursors. ACS Catalysis, 2014, 4, 2048-2059.	11,2	40
89	A modulated excitation ED-EXAFS/DRIFTS study of hydrothermal ageing of Rh/Al2O3. Catalysis Today, 2014, 229, 80-87.	4.4	27
90	Chromium-induced deactivation of a commercial honeycomb noble metal-based CO oxidation catalyst. Applied Catalysis A: General, 2014, 469, 259-266.	4.3	6

#	Article	IF	CITATIONS
91	Ageing induced improvement of methane oxidation activity of Pd/YFeO ₃ . Catalysis Science and Technology, 2014, 4, 2919.	4.1	31
92	Revealing the Dynamic Structure of Complex Solid Catalysts Using Modulated Excitation Xâ€ray Diffraction. Angewandte Chemie - International Edition, 2014, 53, 8890-8894.	13.8	48
93	PdO x /Pd at Work in a Model Three-Way Catalyst for Methane Abatement Monitored by Operando XANES. Topics in Catalysis, 2013, 56, 239-242.	2.8	26
94	Observations on the Aging Environment Dependent NO Oxidation Activity of Model Pt/Al2O3 Diesel Oxidation Catalyst. Topics in Catalysis, 2013, 56, 329-332.	2.8	1
95	Sorption enhanced CO2 methanation. Physical Chemistry Chemical Physics, 2013, 15, 9620.	2.8	130
96	Synchrotron high energy X-ray methods coupled to phase sensitive analysis to characterize aging of solid catalysts with enhanced sensitivity. Physical Chemistry Chemical Physics, 2013, 15, 8629.	2.8	36
97	Time resolved operando spectroscopic study of the origin of phosphorus induced chemical aging of model three-way catalysts Pd/Al2O3. Catalysis Today, 2013, 205, 3-9.	4.4	17
98	Operando XANES study of simulated transient cycles on a Pd-only three-way catalyst. Catalysis Communications, 2013, 39, 55-59.	3.3	16
99	Flame-made visible light active TiO2:Cr photocatalysts: Correlation between structural, optical and photocatalytic properties. Catalysis Today, 2013, 209, 47-53.	4.4	30
100	Debinding Mechanisms in Thermoplastic processing of a Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^'<i>Î'</i>} ―Stearic Acid–Polystyrene Mixture. ChemSusChem, 2013, 6, 336-344.	6.8	5
101	Influence of the synthesis method on the structure of Pd-substituted perovskite catalysts for methane oxidation. Catalysis Today, 2013, 208, 42-47.	4.4	38
102	The impact of aging environment on the evolution of Al2O3 supported Pt nanoparticles and their NO oxidation activity. Applied Catalysis B: Environmental, 2013, 129, 214-224.	20.2	45
103	Subsecond and in Situ Chemical Speciation of Pt/Al ₂ O ₃ during Oxidation–Reduction Cycles Monitored by High-Energy Resolution Off-Resonant X-ray Spectroscopy. Journal of the American Chemical Society, 2013, 135, 19071-19074.	13.7	43
104	NiO as a peculiar support for metal nanoparticles in polyols oxidation. Catalysis Science and Technology, 2013, 3, 394-399.	4.1	40
105	Perovskite-supported Palladium for Methane Oxidation – Structure–Activity Relationships. Chimia, 2012, 66, 675-680.	0.6	7
106	Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts. Journal of Catalysis, 2012, 293, 27-38.	6.2	135
107	On the State of Pd in Perovskite-Type Oxidation Catalysts of Composition A(B,Pd)O $<$ sub $>3\hat{A}\pm\hat{I}sub>(A=) Tj ETC$	Qq1_1 0.78 6.7	84314 rgBT
108	Who Is Doing the Job? Unraveling the Role of Ga ₂ O ₃ in Methanol Steam Reforming on Pd ₂ Ga/Ga ₂ O ₃ . ACS Catalysis, 2012, 2, 2305-2315.	11.2	82

#	Article	IF	Citations
109	CO2 hydrogenation on a metal hydride surface. Physical Chemistry Chemical Physics, 2012, 14, 5518.	2.8	37
110	Thermal and chemical aging of model three-way catalyst Pd/Al2O3 and its impact on the conversion of CNG vehicle exhaust. Catalysis Today, 2012, 184, 237-244.	4.4	75
111	Improvement of Catalytic Activity of LaFe _{0.95} Pd _{0.05} O ₃ for Methane Oxidation under Transient Conditions. Journal of Physical Chemistry C, 2011, 115, 1231-1239.	3.1	37
112	Temperature-induced evolution of reaction sites and mechanisms during preferential oxidation of CO. Journal of Catalysis, 2011, 277, 64-71.	6.2	86
113	Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. Journal of Catalysis, 2011, 280, 168-177.	6.2	144
114	Redox properties of supported copper catalysts studied in liquid and gas phase by in situ ATR-IR and XAS. Catalysis Today, 2011, 178, 124-131.	4.4	10
115	Au on Nanosized NiO: A Cooperative Effect between Au and Nanosized NiO in the Baseâ€Free Alcohol Oxidation. ChemCatChem, 2011, 3, 1612-1618.	3.7	57
116	Modulation Excitation X-Ray Absorption Spectroscopy to Probe Surface Species on Heterogeneous Catalysts. Topics in Catalysis, 2011, 54, 1070-1078.	2.8	80
117	Lab Scale Fixed-Bed Reactor for Operando X-Ray Absorption Spectroscopy for Structure Activity Studies of Supported Metal Oxide Catalysts. Topics in Catalysis, 2011, 54, 1213-1218.	2.8	6
118	Influence of thermally induced structural changes of 2wt% Pd/LaFeO3 on methane combustion activity. Applied Catalysis B: Environmental, 2011, 106, 494-502.	20.2	37
119	Catalytic combustion of methane on nano-structured perovskite-type oxides fabricated by ultrasonic spray combustion. Applied Catalysis B: Environmental, 2010, 94, 27-37.	20.2	49
120	Elucidation of structure–activity relationships of model three way catalysts for the combustion of methane. Applied Catalysis B: Environmental, 2010, 94, 77-84.	20.2	38
121	Influence of aging effects on the conversion efficiency of automotive exhaust gas catalysts. Catalysis Today, 2010, 155, 140-146.	4.4	45
122	Synthesis, Crystal Structure and Optical Properties of LaNbON ₂ Â. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 905-912.	1.2	47
123	Revisiting the Problem of Active Sites for Methane Combustion on Pd/Al ₂ O ₃ by Operando XANES in a Lab-Scale Fixed-Bed Reactor. Journal of Physical Chemistry C, 2010, 114, 9439-9443.	3.1	78
124	The Effect of the State of Pd on Methane Combustion in Pd-Doped LaFeO ₃ . Journal of Physical Chemistry C, 2010, 114, 4584-4594.	3.1	78
125	Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 5307.	2.8	54
126	First steps in combining modulation excitation spectroscopy with synchronous dispersive EXAFS/DRIFTS/mass spectrometry for in situ time resolved study of heterogeneous catalysts. Physical Chemistry Chemical Physics, 2010, 12, 5634.	2.8	89

#	Article	IF	Citations
127	Advances in Infrared Spectroscopy of Catalytic Solid–Liquid Interfaces: The Case of Selective Alcohol Oxidation. Topics in Catalysis, 2009, 52, 1323-1333.	2.8	63
128	The influence of chemical and thermal aging on the catalytic activity of a monolithic diesel oxidation catalyst. Applied Catalysis B: Environmental, 2009, 93, 177-184.	20.2	63
129	Probing Surface Properties and Reaction Intermediates During Heterogeneous Catalytic Oxidation of Acetaldehyde. ChemCatChem, 2009, 1, 286-294.	3.7	18
130	Chemical Availability and Reactivity of Functional Groups grafted to Magnetic Nanoparticles monitored In situ by ATR-IR Spectroscopy. Chemistry of Materials, 2009, 21, 4316-4322.	6.7	33
131	Crystallization of an Aromatic Biopolyester. Macromolecules, 2009, 42, 6322-6326.	4.8	10
132	Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity. Applied Catalysis B: Environmental, 2008, 79, 53-62.	20.2	268
133	Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation of benzyl alcohol: An in situ ATR-IR spectroscopy study. Journal of Catalysis, 2008, 258, 170-176.	6.2	41
134	Enantioselective Interactions at the Solid–Liquid Interface of an HPLC Column under Working Conditions. Analytical Chemistry, 2008, 80, 3572-3583.	6.5	12
135	Chiral Modification of Rh and Pt Surfaces:  Effect of Rotational Flexibility of Cinchona-Type Modifiers on Their Adsorption Behavior. Journal of Physical Chemistry C, 2008, 112, 3866-3874.	3.1	20
136	Structure Sensitivity of Palladium-Catalyzed Liquid-Phase Alcohol Oxidation. A Combined <i>in situ</i> ATR-IR and Selective Site Blocking Study. Chimia, 2007, 61, 175-178.	0.6	2
137	Catalytic Chiral Metal Surfaces Generated by Adsorption of O-Phenyl Derivatives of Cinchonidine. Journal of Physical Chemistry C, 2007, 111, 9349-9358.	3.1	16
138	Surface Processes Occurring on Rh/Alumina during Chiral Modification by Cinchonidine:  An ATR-IR Spectroscopy Study. Langmuir, 2007, 23, 8087-8093.	3.5	12
139	Role of Guiding Groups in Cinchona-Modified Platinum for Controlling the Sense of Enantiodifferentiation in the Hydrogenation of Ketones. Journal of the American Chemical Society, 2007, 129, 10582-10590.	13.7	39
140	Probing the Interface in Vapor-Deposited Bimetallic Pdâ^'Au and Ptâ^'Au Films by CO Adsorption from the Liquid Phase. Langmuir, 2007, 23, 1203-1208.	3.5	11
141	Chirally Modified Platinum Generated by Adsorption of Cinchonidine Ether Derivatives: Towards Uncovering the Chiral Sites. Chemistry - A European Journal, 2007, 13, 9236-9244.	3.3	14
142	Controlling the Sense of Enantioselection on Surfaces by Conformational Changes of Adsorbed Modifiers. Angewandte Chemie - International Edition, 2007, 46, 3905-3908.	13.8	45
143	Adsorption mode of the chiral modifier cinchonidine on Au(1 11). Applied Surface Science, 2007, 253, 3480-3484.	6.1	17
144	Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy. Journal of Catalysis, 2007, 251, 48-58.	6.2	33

#	Article	IF	CITATIONS
145	Molecular insight into the dynamics of chiral modification of Pt/alumina. Journal of Catalysis, 2007, 248, 68-76.	6.2	38
146	Structural properties of flame-made Rh/Al2O3 and catalytic behavior in chemoselective hydrogenation. Journal of Catalysis, 2007, 249, 269-277.	6.2	15
147	Combined liquid-phase ATR-IR and XAS study of the Bi-promotion in the aerobic oxidation of benzyl alcohol over Pd/Al2O3. Journal of Catalysis, 2007, 252, 77-87.	6.2	85
148	Flame-synthesized LaCoO3-supported Pd2. Catalytic behavior in the reduction of NO by H2 under lean conditions. Journal of Catalysis, 2007, 252, 137-147.	6.2	57
149	Flame-synthesized LaCoO3-supported Pd1. Structure, thermal stability and reducibility. Journal of Catalysis, 2007, 252, 127-136.	6.2	70
150	Discrimination of Active Palladium Sites in Catalytic Liquid-Phase Oxidation of Benzyl Alcohol. Journal of Physical Chemistry B, 2006, 110, 22982-22986.	2.6	115
151	Theoretical and Spectroscopic Study of the Effect of Ring Substitution on the Adsorption of Anisole on Platinum. Journal of Physical Chemistry B, 2006, 110, 9956-9965.	2.6	27
152	Solvent-Induced Conformational Changes of O-Phenyl-cinchonidine: Â A Theoretical and VCD Spectroscopy Study. Journal of Physical Chemistry A, 2006, 110, 1118-1127.	2.5	38
153	ATR-IR Spectroscopy of Pendant NH2 Groups on Silica Involved in the Knoevenagel Condensation. Langmuir, 2006, 22, 3698-3706.	3.5	49
154	Cinchonidine Adsorption on Gold and Gold-Containing Bimetallic Platinum Metal Surfaces:  An Attenuated Total Reflection Infrared and Density Functional Theory Study. Journal of Physical Chemistry B, 2006, 110, 17082-17089.	2.6	14
155	The Origin of Chemo- and Enantioselectivity in the Hydrogenation of Diketones on Platinum. Journal of the American Chemical Society, 2006, 128, 4048-4057.	13.7	51
156	Palladium-catalyzed oxidation of geraniol in dense carbon dioxide. Applied Catalysis A: General, 2006, 299, 66-72.	4.3	24
157	Alumina-catalysed degradation of ethyl pyruvate during enantioselective hydrogenation over Pt/alumina and its inhibition by acetic acid. Applied Catalysis A: General, 2006, 297, 165-173.	4.3	26
158	Why are \hat{l} ±-hydroxycarboxylic acids poor chiral modifiers for Pt in the hydrogenation of ketones?. Journal of Catalysis, 2006, 237, 230-236.	6.2	14
159	Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite. Journal of Catalysis, 2006, 241, 287-295.	6.2	62
160	Competition of chiral modifiers on platinum: A transient catalytic and in situ ATR-IR study in continuous reactors. Journal of Catalysis, 2006, 244, 260-263.	6.2	30
161	Promoted Ru?hydroxyapatite: designed structure for the fast and highly selective oxidation of alcohols with oxygen. Journal of Catalysis, 2005, 230, 406-419.	6.2	108
162	On the role of CO formation during the aerobic oxidation of alcohols on Pd/Al2O3: an in situ attenuated total reflection infrared study. Journal of Catalysis, 2005, 234, 64-75.	6.2	66

#	Article	IF	Citations
163	DFT and ATR-IR insight into the conformational flexibility of cinchonidine adsorbed on platinum: Proton exchange with metal. Journal of Catalysis, 2005, 236, 1-8.	6.2	53
164	Unraveling the Surface Reactions during Liquid-Phase Oxidation of Benzyl Alcohol on Pd/Al2O3:Â an in Situ ATRâ 'IR Study. Journal of Physical Chemistry B, 2005, 109, 958-967.	2.6	158
165	Supercritical Carbon Dioxide:  An Inert Solvent for Catalytic Hydrogenation?. Journal of Physical Chemistry B, 2005, 109, 16794-16800.	2.6	65
166	Competition at Chiral Metal Surfaces:Â Fundamental Aspects of the Inversion of Enantioselectivity in Hydrogenations on Platinum. Journal of the American Chemical Society, 2005, 127, 8467-8477.	13.7	93
167	From production to product: part 2, FT-IR spectroscopy as a tool for quality control in the preparation of alkaline solutions of bagasse lignin. Industrial Crops and Products, 2004, 20, 159-167.	5.2	7
168	The Fate of Ethyl Pyruvate during Adsorption on Platinum Chirally Modified by Cinchonidine Studied by ATRâ^'IR Spectroscopyâ€. Journal of Physical Chemistry B, 2004, 108, 14384-14391.	2.6	27
169	Interactions of a vinyl ether with acid-modified silica-based catalyst studied by ATR-IR spectroscopy. Journal of Catalysis, 2003, 219, 425-433.	6.2	14
170	Novel Routes to Cu(salicylaldimine) Covalently Bound to Silica:Â Combined Pulse EPR and in Situ Attenuated Total Reflection-IR Studies of the Immobilization. Inorganic Chemistry, 2003, 42, 2559-2571.	4.0	47
171	FTIR study of chiral modifier–reactant interactions. The cinchonidine–alkenoic acid system. Perkin Transactions II RSC, 2002, , 437-441.	1.1	36
172	Probing boundary sites on a Pt/Al2O3 model catalyst by CO2 hydrogenation and in situ ATR-IR spectroscopy of catalytic solid–liquid interfaces. Physical Chemistry Chemical Physics, 2002, 4, 2667-2672.	2.8	77
173	Probing Catalytic Solid-Liquid Interfaces by Attenuated Total Reflection Infrared Spectroscopy: Adsorption of Carboxylic Acids on Alumina and Titania. Helvetica Chimica Acta, 2002, 85, 3639-3656.	1.6	24
174	In Situ ATR–IR Study of the Adsorption of Cinchonidine on Pd/Al2O3: Differences and Similarities with Adsorption on Pt/Al2O3. Journal of Catalysis, 2002, 210, 160-170.	6.2	90
175	An in Situ Attenuated Total Reflection Infrared Study of a Chiral Catalytic Solidâ^'Liquid Interface:Â Cinchonidine Adsorption on Pt. Journal of the American Chemical Society, 2001, 123, 12074-12084.	13.7	217
176	Pt and Pt/Al2O3 Thin Films for Investigation of Catalytic Solidâ^Liquid Interfaces by ATR-IR Spectroscopy:  CO Adsorption, H2-Induced Reconstruction and Surface-Enhanced Absorption. Journal of Physical Chemistry B, 2001, 105, 3187-3195.	2.6	143
177	Chiral modification of platinum catalysts by cinchonidine adsorption studied by in situ ATR-IR spectroscopy. Chemical Communications, 2001, , 1172-1173.	4.1	7 3
178	Enhanced Enantioselectivity in Ethyl Pyruvate Hydrogenation Due to Competing Enantioselective Aldol Reaction Catalyzed by Cinchonidine. Journal of Catalysis, 2000, 193, 139-144.	6.2	41
179	Conformational isomerism of \hat{l}_{\pm} -ketoesters. A FTIR and ab initio study. Perkin Transactions II RSC, 2000, , 221-227.	1.1	29
180	Molecular interaction between cinchonidine and acetic acid studied by NMR, FTIR and ab initio methods. Journal of the Chemical Society Perkin Transactions II, 1999, , 1305-1312.	0.9	61

#	Article	lF	CITATIONS
181	Methane combustion on some perovskite-like mixed oxides. Applied Catalysis B: Environmental, 1998, 16, 119-126.	20.2	183
182	NO reduction by H2 over perovskite-like mixed oxides. Applied Catalysis B: Environmental, 1998, 16, 339-345.	20.2	51