Ofer Mandelboim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6871290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature Medicine, 2006, 12, 1065-1074.	30.7	1,456
2	The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17858-17863.	7.1	1,218
3	Microbial Flora Drives Interleukin 22 Production in Intestinal NKp46+ Cells that Provide Innate Mucosal Immune Defense. Immunity, 2008, 29, 958-970.	14.3	981
4	Binding of the Fap2 Protein of Fusobacterium nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack. Immunity, 2015, 42, 344-355.	14.3	900
5	Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature, 2001, 409, 1055-1060.	27.8	844
6	The Selective Downregulation of Class I Major Histocompatibility Complex Proteins by HIV-1 Protects HIV-Infected Cells from NK Cells. Immunity, 1999, 10, 661-671.	14.3	791
7	Characterization of the expression of MHC proteins in human embryonic stem cells. Proceedings of the United States of America, 2002, 99, 9864-9869.	7.1	628
8	Host Immune System Gene Targeting by a Viral miRNA. Science, 2007, 317, 376-381.	12.6	604
9	Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nature Immunology, 2006, 7, 517-523.	14.5	503
10	Diverse Herpesvirus MicroRNAs Target the Stress-Induced Immune Ligand MICB to Escape Recognition by Natural Killer Cells. Cell Host and Microbe, 2009, 5, 376-385.	11.0	428
11	NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nature Immunology, 2015, 16, 376-385.	14.5	407
12	Human Embryonic Stem Cells and Their Differentiated Derivatives Are Less Susceptible to Immune Rejection Than Adult Cells. Stem Cells, 2006, 24, 221-229.	3.2	378
13	Recognition of viral hemagglutinins by NKp44 but not by NKp30. European Journal of Immunology, 2001, 31, 2680-2689.	2.9	357
14	Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nature Immunology, 2005, 6, 515-523.	14.5	327
15	CXCL12 expression by invasive trophoblasts induces the specific migration of CD16– human natural killer cells. Blood, 2003, 102, 1569-1577.	1.4	326
16	The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature, 1997, 386, 514-517.	27.8	302
17	Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nature Immunology, 2008, 9, 1065-1073.	14.5	283
18	Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nature Communications, 2020, 11, 3259.	12.8	265

#	Article	IF	CITATIONS
19	Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends in Immunology, 2013, 34, 182-191.	6.8	262
20	CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma. Nature, 1994, 369, 67-71.	27.8	254
21	Endometrial NK Cells Are Special Immature Cells That Await Pregnancy. Journal of Immunology, 2008, 181, 1869-1876.	0.8	234
22	Trained Memory of Human Uterine NK Cells Enhances Their Function in Subsequent Pregnancies. Immunity, 2018, 48, 951-962.e5.	14.3	230
23	The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood, 2004, 103, 664-672.	1.4	225
24	Human NK Cells Selective Targeting of Colon Cancer–Initiating Cells: A Role for Natural Cytotoxicity Receptors and MHC Class I Molecules. Journal of Immunology, 2013, 190, 2381-2390.	0.8	224
25	Mouse <scp>TIGIT</scp> inhibits <scp>NK</scp> â€cell cytotoxicity upon interaction with <scp>PVR</scp> . European Journal of Immunology, 2013, 43, 2138-2150.	2.9	215
26	REVIEW ARTICLE: The Unique Properties of Uterine NK Cells. American Journal of Reproductive Immunology, 2010, 63, 434-444.	1.2	178
27	NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nature Medicine, 2012, 18, 1827-1834.	30.7	164
28	CD66a Interactions Between Human Melanoma and NK Cells: A Novel Class I MHC-Independent Inhibitory Mechanism of Cytotoxicity. Journal of Immunology, 2002, 168, 2803-2810.	0.8	163
29	The activating receptor NKp46 is essential for the development of type 1 diabetes. Nature Immunology, 2010, 11, 121-128.	14.5	157
30	Tumor and viral recognition by natural killer cells receptors. Seminars in Cancer Biology, 2006, 16, 348-358.	9.6	156
31	An Identical miRNA of the Human JC and BK Polyoma Viruses Targets the Stress-Induced Ligand ULBP3 to Escape Immune Elimination. Cell Host and Microbe, 2011, 9, 93-102.	11.0	153
32	Novel Insights on Human NK Cells' Immunological Modalities Revealed by Gene Expression Profiling. Journal of Immunology, 2004, 173, 6547-6563.	0.8	148
33	The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nature Immunology, 2010, 11, 806-813.	14.5	144
34	Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nature Medicine, 1995, 1, 1179-1183.	30.7	143
35	NKp46 Receptor-Mediated Interferon-Î ³ Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis. Immunity, 2018, 48, 107-119.e4.	14.3	143
36	The NKp46 Receptor Contributes to NK Cell Lysis of Mononuclear Phagocytes Infected with an Intracellular Bacterium. Journal of Immunology, 2002, 168, 3451-3457.	0.8	142

#	Article	IF	CITATIONS
37	NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut, 2012, 61, 885-893.	12.1	142
38	CD11cloB220+ interferon-producing killer dendritic cells are activated natural killer cells. Journal of Experimental Medicine, 2007, 204, 2569-2578.	8.5	140
39	Recognition and Prevention of Tumor Metastasis by the NK Receptor NKp46/NCR1. Journal of Immunology, 2012, 188, 2509-2515.	0.8	138
40	Complexes of HLA-G Protein on the Cell Surface Are Important for Leukocyte Ig-Like Receptor-1 Function. Journal of Immunology, 2003, 171, 1343-1351.	0.8	136
41	Novel APC-like properties of human NK cells directly regulate T cell activation. Journal of Clinical Investigation, 2004, 114, 1612-1623.	8.2	136
42	Enhanced In Vivo Growth of Lymphoma Tumors in the Absence of the NK-Activating Receptor NKp46/NCR1. Journal of Immunology, 2009, 182, 2221-2230.	0.8	134
43	MiRNA-Mediated Control of HLA-G Expression and Function. PLoS ONE, 2012, 7, e33395.	2.5	127
44	Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. Journal of the National Cancer Institute, 2017, 109, .	6.3	121
45	NKG2D Ligands–Critical Targets for Cancer Immune Escape and Therapy. Frontiers in Immunology, 2018, 9, 2040.	4.8	120
46	The CD85J/Leukocyte Inhibitory Receptor-1 Distinguishes between Conformed and β2-Microglobulin-Free HLA-G Molecules. Journal of Immunology, 2005, 175, 4866-4874.	0.8	118
47	Colon Cancer-Associated Fusobacterium nucleatum May Originate From the Oral Cavity and Reach Colon Tumors via the Circulatory System. Frontiers in Cellular and Infection Microbiology, 2020, 10, 400.	3.9	117
48	When killers become helpers. Trends in Immunology, 2007, 28, 201-206.	6.8	113
49	MiR-10b Downregulates the Stress-Induced Cell Surface Molecule MICB, a Critical Ligand for Cancer Cell Recognition by Natural Killer Cells. Cancer Research, 2012, 72, 5463-5472.	0.9	110
50	Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cellular and Molecular Immunology, 2019, 16, 40-52.	10.5	110
51	Direct Recognition of Fusobacterium nucleatum by the NK Cell Natural Cytotoxicity Receptor NKp46 Aggravates Periodontal Disease. PLoS Pathogens, 2012, 8, e1002601.	4.7	106
52	Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. European Journal of Immunology, 2004, 34, 1164-1174.	2.9	104
53	Analysis of Human Cytomegalovirus-Encoded MicroRNA Activity during Infection. Journal of Virology, 2009, 83, 10684-10693.	3.4	104
54	Characterization of tumor infiltrating Natural Killer cell subset. Oncotarget, 2015, 6, 13835-13843.	1.8	104

#	Article	IF	CITATIONS
55	Recruitment of MHC Class I Molecules by Tapasin into the Transporter Associated with Antigen Processing-Associated Complex Is Essential for Optimal Peptide Loading. Journal of Immunology, 2002, 168, 1950-1960.	0.8	103
56	Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood, 2003, 102, 1951-1958.	1.4	103
57	Recognition of HLA-Cw4 but Not HLA-Cw6 by the NK Cell Receptor Killer Cell Ig-Like Receptor Two-Domain Short Tail Number 4. Journal of Immunology, 2001, 166, 7260-7267.	0.8	102
58	2B4 (CD244) Is Expressed and Functional on Human Eosinophils. Journal of Immunology, 2005, 174, 110-118.	0.8	100
59	The Binding Site of NK Receptors on HLA-C Molecules. Immunity, 1997, 6, 341-350.	14.3	94
60	Carcinoembryonic Antigen (CEA) Inhibits NK Killing via Interaction with CEA-Related Cell Adhesion Molecule 1. Journal of Immunology, 2005, 174, 6692-6701.	0.8	94
61	The Natural Cytotoxicity Receptor NKp46 Is Dispensable for IL-22-Mediated Innate Intestinal Immune Defense against <i>Citrobacter rodentium</i> . Journal of Immunology, 2009, 183, 6579-6587.	0.8	93
62	Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. Journal of Clinical Investigation, 2002, 110, 943-953.	8.2	93
63	MHC Class I-Independent Recognition of NK-Activating Receptor KIR2DS4. Journal of Immunology, 2004, 173, 1819-1825.	0.8	91
64	Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma. Cancer Research, 2003, 63, 6340-9.	0.9	90
65	<i>Fusobacterium nucleatum</i> supresses anti-tumor immunity by activating CEACAM1. Oncolmmunology, 2019, 8, e1581531.	4.6	87
66	Tumor Immunoediting by NKp46. Journal of Immunology, 2010, 184, 5637-5644.	0.8	84
67	An integrated view of the regulation of NKG2D ligands. Immunology, 2009, 128, 1-6.	4.4	76
68	Human NK cells: their ligands, receptors and functions. Immunological Reviews, 1997, 155, 119-125.	6.0	75
69	Dynamic Co-evolution of Host and Pathogen: HCMV Downregulates the Prevalent Allele MICAâ^—008 to Escape Elimination by NK Cells. Cell Reports, 2015, 10, 968-982.	6.4	74
70	NK Cell Recognition of Candida glabrata through Binding of NKp46 and NCR1 to Fungal Ligands Epa1, Epa6, and Epa7. Cell Host and Microbe, 2016, 20, 527-534.	11.0	74
71	H5-Type Influenza Virus Hemagglutinin Is Functionally Recognized by the Natural Killer-Activating Receptor NKp44. Journal of Virology, 2008, 82, 2028-2032.	3.4	71
72	Nectin4 is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity. , 2020, 8, e000266.		69

#	Article	IF	CITATIONS
73	Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunology, Immunotherapy, 2019, 68, 1689-1700.	4.2	68
74	Enhanced Recognition of Human NK Receptors After Influenza Virus Infection. Journal of Immunology, 2003, 171, 915-923.	0.8	65
75	Inhibitory NK Receptor Recognition of HLA-G: Regulation by Contact Residues and by Cell Specific Expression at the Fetal-Maternal Interface. PLoS ONE, 2010, 5, e8941.	2.5	65
76	CEACAM1 dampens antitumor immunity by down-regulating NKG2D ligand expression on tumor cells. Journal of Experimental Medicine, 2011, 208, 2633-2640.	8.5	64
77	Dynamic behavior of NK cells during activation in lymph nodes. Blood, 2009, 114, 3227-3234.	1.4	63
78	The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. Blood, 2004, 103, 1770-1778.	1.4	62
79	Expression of KIR2DL1 on the entire NK cell population: a possible novel immunodeficiency syndrome. Blood, 2004, 103, 1965-1966.	1.4	62
80	Killing of Avian and Swine Influenza Virus by Natural Killer Cells. Journal of Virology, 2010, 84, 3993-4001.	3.4	62
81	Influenza Virus Infection Augments NK Cell Inhibition through Reorganization of Major Histocompatibility Complex Class I Proteins. Journal of Virology, 2008, 82, 8030-8037.	3.4	61
82	Natural Killer Cell-Mediated Host Defense against Uropathogenic E.Âcoli Is Counteracted by Bacterial HemolysinA-Dependent Killing of NK Cells. Cell Host and Microbe, 2013, 14, 664-674.	11.0	61
83	Neisserial Outer Membrane Vesicles Bind the Coinhibitory Receptor Carcinoembryonic Antigen-Related Cellular Adhesion Molecule 1 and Suppress CD4 ⁺ T Lymphocyte Function. Infection and Immunity, 2007, 75, 4449-4455.	2.2	60
84	Elucidating the Mechanisms of Influenza Virus Recognition by Ncr1. PLoS ONE, 2012, 7, e36837.	2.5	60
85	Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. Journal of Clinical Investigation, 2002, 110, 943-953.	8.2	60
86	The Role of MicroRNAs in the Control of Innate Immune Response in Cancer. Journal of the National Cancer Institute, 2014, 106, .	6.3	57
87	Impaired spontaneous endocytosis of HLA-G. European Journal of Immunology, 1997, 27, 2714-2719.	2.9	56
88	Expression and Function of CD300 in NK Cells. Journal of Immunology, 2010, 185, 2877-2886.	0.8	55
89	Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules. Journal of Virology, 2017, 91, .	3.4	55
90	Altered glycosylation of recombinant NKp30 hampers binding to heparan sulfate: a lesson for the use of recombinant immunoreceptors as an immunological tool. Glycobiology, 2008, 18, 28-41.	2.5	53

#	Article	IF	CITATIONS
91	Paired NK cell receptors controlling NK cytotoxicity. FEBS Letters, 2010, 584, 4895-4900.	2.8	53
92	Recognition and Killing of Human and Murine Pancreatic β Cells by the NK Receptor NKp46. Journal of Immunology, 2011, 187, 3096-3103.	0.8	53
93	Soluble nonclassical HLA generated by the metalloproteinase pathway. Human Immunology, 2003, 64, 802-810.	2.4	52
94	Inhibition of Human Tumor-Infiltrating Lymphocyte Effector Functions by the Homophilic Carcinoembryonic Cell Adhesion Molecule 1 Interactions. Journal of Immunology, 2006, 177, 6062-6071.	0.8	52
95	Neuraminidase-Mediated, NKp46-Dependent Immune-Evasion Mechanism of Influenza Viruses. Cell Reports, 2013, 3, 1044-1050.	6.4	52
96	NKp46. International Journal of Biochemistry and Cell Biology, 2001, 33, 1147-1150.	2.8	49
97	CEACAM1 (CD66a) Promotes Human Monocyte Survival via a Phosphatidylinositol 3-Kinase- and AKT-dependent Pathway. Journal of Biological Chemistry, 2006, 281, 39179-39193.	3.4	49
98	The RNA binding protein IMP3 facilitates tumor immune escape by downregulating the stress-induced ligands ULPB2 and MICB. ELife, 2016, 5, .	6.0	48
99	Immune evasion by oncogenic proteins of acute myeloid leukemia. Blood, 2014, 123, 1535-1543.	1.4	47
100	HNRNPR Regulates the Expression of Classical and Nonclassical MHC Class I Proteins. Journal of Immunology, 2016, 196, 4967-4976.	0.8	46
101	Inflammatory monocytes and NK cells play a crucial role in DNAM-1–dependent control of cytomegalovirus infection. Journal of Experimental Medicine, 2016, 213, 1835-1850.	8.5	46
102	NKp46 O-Glycan Sequences That Are Involved in the Interaction with Hemagglutinin Type 1 of Influenza Virus. Journal of Virology, 2010, 84, 3789-3797.	3.4	45
103	Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cellular and Molecular Life Sciences, 2012, 69, 3911-3920.	5.4	45
104	The interaction between <scp>CD</scp> 300a and phosphatidylserine inhibits tumor cell killing by <scp>NK</scp> cells. European Journal of Immunology, 2013, 43, 2151-2161.	2.9	45
105	A novel assay for detecting virus-specific antibodies triggering activation of FcÎ ³ receptors. Journal of Immunological Methods, 2013, 387, 21-35.	1.4	44
106	<scp>CEACAM</scp> 1 on activated <scp>NK</scp> cells inhibits <scp>NKG</scp> 2 <scp>D</scp> â€mediated cytolytic function and signaling. European Journal of Immunology, 2013, 43, 2473-2483.	2.9	44
107	Tumor Targeting by Fusobacterium nucleatum: A Pilot Study and Future Perspectives. Frontiers in Cellular and Infection Microbiology, 2017, 7, 295.	3.9	44
108	The Critical Role of Residues 43R and 44Q of Carcinoembryonic Antigen Cell Adhesion Molecules-1 in the Protection from Killing by Human NK Cells. Journal of Immunology, 2004, 173, 3732-3739.	0.8	42

#	Article	IF	CITATIONS
109	Expression of Ligands to NKp46 in Benign and Malignant Melanocytes. Journal of Investigative Dermatology, 2008, 128, 972-979.	0.7	42
110	The involvement of NK cells in ankylosing spondylitis. International Immunology, 2005, 17, 837-845.	4.0	41
111	Influenza Virus Uses Its Neuraminidase Protein to Evade the Recognition of Two Activating NK Cell Receptors. Journal of Infectious Diseases, 2014, 210, 410-418.	4.0	41
112	MicroRNA Editing Facilitates Immune Elimination of HCMV Infected Cells. PLoS Pathogens, 2014, 10, e1003963.	4.7	40
113	Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma. Oncotarget, 2016, 7, 26866-26878.	1.8	40
114	The Natural Cytotoxicity Receptor 1 Contribution to Early Clearance of Streptococcus pneumoniae and to Natural Killer-Macrophage Cross Talk. PLoS ONE, 2011, 6, e23472.	2.5	38
115	IFNG-AS1 Enhances Interferon Gamma Production in Human Natural Killer Cells. IScience, 2019, 11, 466-473.	4.1	38
116	MicroRNA based immunoevasion mechanism of human polyomaviruses. RNA Biology, 2011, 8, 591-594.	3.1	37
117	Human Herpesvirus 6B Downregulates Expression of Activating Ligands during Lytic Infection To Escape Elimination by Natural Killer Cells. Journal of Virology, 2016, 90, 9608-9617.	3.4	37
118	Human cytomegalovirus escapes immune recognition by NK cells through the downregulation of B7-H6 by the viral genes US18 and US20. Scientific Reports, 2017, 7, 8661.	3.3	37
119	Learning from experience: cellular and molecular bases for improved outcome in subsequent pregnancies. American Journal of Obstetrics and Gynecology, 2019, 221, 183-193.	1.3	37
120	The <i>Helicobacter pylori</i> HopQ outermembrane protein inhibits immune cell activities. Oncolmmunology, 2019, 8, e1553487.	4.6	37
121	MiR-520d-5p directly targets TWIST1 and downregulates the metastamiR miR-10b. Oncotarget, 2014, 5, 12141-12150.	1.8	37
122	<i>Fusobacterium nucleatum</i> and cancer. Periodontology 2000, 2022, 89, 166-180.	13.4	37
123	HSV1 MicroRNA Modulation of GPI Anchoring and Downstream Immune Evasion. Cell Reports, 2016, 17, 949-956.	6.4	35
124	The human 2B4 and NTB-A receptors bind the influenza viral hemagglutinin and co-stimulate NK cell cytotoxicity. Oncotarget, 2016, 7, 13093-13105.	1.8	35
125	NK Cell Receptor NKp46 Regulates Graft-versus-Host Disease. Cell Reports, 2014, 7, 1809-1814.	6.4	33
126	Disarming Cellular Alarm Systems—Manipulation of Stress-Induced NKG2D Ligands by Human Herpesviruses. Frontiers in Immunology, 2017, 8, 390.	4.8	33

#	Article	IF	CITATIONS
127	Cytokine secretion and NK cell activity in human ADAM17 deficiency. Oncotarget, 2015, 6, 44151-44160.	1.8	33
128	Biological function of the soluble CEACAM1 protein and implications in TAP2-deficient patients. European Journal of Immunology, 2004, 34, 2138-2148.	2.9	32
129	The Viral KSHV Chemokine vMIP-II Inhibits the Migration of Naive and Activated Human NK Cells by Antagonizing Two Distinct Chemokine Receptors. PLoS Pathogens, 2013, 9, e1003568.	4.7	31
130	Intracellular Cysteine Residues in the Tail of MHC Class I Proteins Are Crucial for Extracellular Recognition by Leukocyte Ig-Like Receptor 1. Journal of Immunology, 2007, 179, 3655-3661.	0.8	30
131	Notch activation enhances IFN $^{\hat{3}}$ secretion by human peripheral blood and decidual NK cells. Journal of Reproductive Immunology, 2010, 84, 1-7.	1.9	30
132	Spontaneous pulmonary hypertension in genetic mouse models of natural killer cell deficiency. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L977-L990.	2.9	30
133	Immunorthodontics: in vivo gene expression of orthodontic tooth movement. Scientific Reports, 2020, 10, 8172.	3.3	30
134	CD100 on NK Cells Enhance IFNÎ ³ Secretion and Killing of Target Cells Expressing CD72. PLoS ONE, 2007, 2, e818.	2.5	30
135	Harnessing Soluble NK Cell Killer Receptors for the Generation of Novel Cancer Immune Therapy. PLoS ONE, 2008, 3, e2150.	2.5	30
136	Comprehensive annotations of human herpesvirus 6A and 6B genomes reveal novel and conserved genomic features. ELife, 2020, 9, .	6.0	30
137	Special organization of the HLA-G protein on the cell surface. Human Immunology, 2003, 64, 1011-1016.	2.4	29
138	Human cytomegalovirus induces a distinct innate immune response in the maternal–fetal interface. Virology, 2015, 485, 289-296.	2.4	29
139	HCMV vCXCL1 Binds Several Chemokine Receptors and Preferentially Attracts Neutrophils over NK Cells by Interacting with CXCR2. Cell Reports, 2016, 15, 1542-1553.	6.4	29
140	Epstein–Barr Virus—Associated Malignancies and Immune Escape: The Role of the Tumor Microenvironment and Tumor Cell Evasion Strategies. Cancers, 2021, 13, 5189.	3.7	29
141	The Transmembrane Sequence of Human Histocompatibility Leukocyte Antigen (HLA)-C as a Determinant in Inhibition of a Subset of Natural Killer Cells. Journal of Experimental Medicine, 1999, 189, 1265-1274.	8.5	28
142	Loss of kindlin-3 alters the threshold for NK cell activation in human leukocyte adhesion deficiency-III. Blood, 2012, 120, 3915-3924.	1.4	28
143	The Human Cytomegalovirus Protein UL148A Downregulates the NK Cell-Activating Ligand MICA To Avoid NK Cell Attack. Journal of Virology, 2018, 92, .	3.4	28
144	Subcellular localization determines the delicate balance between the anti- and pro-apoptotic activity of Livin. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 1129-1142.	4.9	27

#	Article	IF	CITATIONS
145	<scp>NK</scp> p46 regulates allergic responses. European Journal of Immunology, 2013, 43, 3006-3016.	2.9	26
146	Regulation of natural cytotoxicity receptors by heparan sulfate proteoglycans in <i> is</i> : A lesson from NKp44. European Journal of Immunology, 2015, 45, 1180-1191.	2.9	26
147	RNA-binding proteins regulate the expression of the immune activating ligand MICB. Nature Communications, 2014, 5, 4186.	12.8	25
148	Functional aberrant expression of CCR2 receptor on chronically activated NK cells in patients with TAP-2 deficiency. Blood, 2005, 106, 3465-3473.	1.4	24
149	Human leucocyte antigen-G and its recognition by natural killer cells. Journal of Reproductive Immunology, 1999, 43, 127-137.	1.9	23
150	Proteomic analysis of human natural killer cells: insights on new potential NK immune functions. Molecular Immunology, 2005, 42, 425-431.	2.2	23
151	HSV-2 Specifically Down Regulates HLA-C Expression to Render HSV-2-Infected DCs Susceptible to NK Cell Killing. PLoS Pathogens, 2013, 9, e1003226.	4.7	23
152	Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1. FASEB Journal, 2019, 33, 3481-3495.	0.5	23
153	Fusobacterium nucleatum CbpF Mediates Inhibition of T Cell Function Through CEACAM1 Activation. Frontiers in Cellular and Infection Microbiology, 2021, 11, 692544.	3.9	23
154	CEACAM1-Mediated Inhibition of Virus Production. Cell Reports, 2016, 15, 2331-2339.	6.4	22
155	Stromal Cell-Derived Factor 1 Mediates Immune Cell Attraction upon Urinary Tract Infection. Cell Reports, 2017, 20, 40-47.	6.4	22
156	The Ebola-Glycoprotein Modulates the Function of Natural Killer Cells. Frontiers in Immunology, 2018, 9, 1428.	4.8	22
157	The Expression Level of Ligands for Natural Killer Cell Receptors Predicts Response to Bacillus Calmette-Guerin Therapy: A Pilot Study. Journal of Urology, 2007, 178, 2660-2664.	0.4	21
158	The paired receptors TIGIT and DNAM-1 as targets for therapeutic antibodies. Human Antibodies, 2017, 25, 111-119.	1.5	21
159	Inhibitory and Coactivating Receptors Recognising the Same Ligand: Immune Homeostasis Exploited by Pathogens and Tumours. Trends in Immunology, 2018, 39, 112-122.	6.8	20
160	Activation of Siglec-7 results in inhibition of in vitro and in vivo growth of human mast cell leukemia cells. Pharmacological Research, 2020, 158, 104682.	7.1	20
161	NK cytotoxicity mediated by CD16 but not by NKp30 is functional in Griscelli syndrome. Blood, 2007, 109, 4306-4312.	1.4	19
162	Battle of the midgets. RNA Biology, 2012, 9, 792-798.	3.1	19

10

#	Article	IF	CITATIONS
163	The Role of Natural Cytotoxicity Receptors in Various Pathologies: Emphasis on Type I Diabetes. Frontiers in Immunology, 2014, 5, 4.	4.8	19
164	Downregulation of the stress-induced ligand ULBP1 following SV40 infection confers viral evasion from NK cell cytotoxicity. Oncotarget, 2016, 7, 15369-15381.	1.8	19
165	The integrated stress response promotes B7H6 expression. Journal of Molecular Medicine, 2020, 98, 135-148.	3.9	18
166	Targeting Natural Killer Cell Reactivity by Employing Antibody to NKp46: Implications for Type 1 Diabetes. PLoS ONE, 2015, 10, e0118936.	2.5	18
167	Placental colonization by Fusobacterium nucleatum is mediated by binding of the Fap2 lectin to placentally displayed Gal-GalNAc. Cell Reports, 2022, 38, 110537.	6.4	18
168	N-linked carbohydrate on human leukocyte antigen-C and recognition by natural killer cell inhibitory receptors. Human Immunology, 2000, 61, 1202-1218.	2.4	17
169	Intercellular Transfer of Carcinoembryonic Antigen from Tumor Cells to NK Cells. Journal of Immunology, 2007, 179, 4424-4434.	0.8	17
170	Manipulation of NK cytotoxicity by the IAP family member Livin. European Journal of Immunology, 2007, 37, 3467-3476.	2.9	17
171	Interaction of the LILRB1 inhibitory receptor with HLA class Ia dimers. European Journal of Immunology, 2016, 46, 1681-1690.	2.9	17
172	NKp46 Recognizes the Sigma1 Protein of Reovirus: Implications for Reovirus-Based Cancer Therapy. Journal of Virology, 2017, 91, .	3.4	17
173	Molecular mechanisms of human herpes viruses inferring with host immune surveillance. , 2020, 8, e000841.		17
174	Expression, Function, and Molecular Properties of the Killer Receptor Ncr1-Noé. Journal of Immunology, 2015, 195, 3959-3969.	0.8	16
175	NKâ€cell receptors NKp46 and NCR1 control human metapneumovirus infection. European Journal of Immunology, 2017, 47, 692-703.	2.9	15
176	Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Scientific Reports, 2017, 7, 13090.	3.3	15
177	SARS-CoV-2 receptor binding domain fusion protein efficiently neutralizes virus infection. PLoS Pathogens, 2021, 17, e1010175.	4.7	15
178	Recognition ofMycoplasma hyorhinis by CD99-Fc molecule. European Journal of Immunology, 2004, 34, 2032-2040.	2.9	14
179	The Expression of the Beta Cell-Derived Autoimmune Ligand for the Killer Receptor Nkp46 Is Attenuated in Type 2 Diabetes. PLoS ONE, 2013, 8, e74033.	2.5	14
180	The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Seminars in Immunopathology, 2014, 36, 659-674.	6.1	13

#	Article	IF	CITATIONS
181	Pregnancy-specific glycoprotein expression in normal gastrointestinal tract and in tumors detected with novel monoclonal antibodies. MAbs, 2016, 8, 491-500.	5.2	13
182	Human antiâ€NKp46 antibody for studies of NKp46â€dependent NK cell function and its applications for type 1 diabetes and cancer research. European Journal of Immunology, 2019, 49, 228-241.	2.9	13
183	Altered dendritic cell–natural killer interaction in Kenyan sex workers resistant to HIV-1 infection. Aids, 2012, 26, 429-436.	2.2	12
184	Expansion of <scp>CD</scp> 16 positive and negative human <scp>NK</scp> cells in response to tumor stimulation. European Journal of Immunology, 2014, 44, 1517-1525.	2.9	12
185	Sweet Killers: NK Cells Need Glycolysis to Kill Tumors. Cell Metabolism, 2018, 28, 183-184.	16.2	12
186	The Role of NK Cells in Innate Immunity. , 2000, 479, 137-145.		11
187	A slowly cleaved viral signal peptide acts as a protein-integral immune evasion domain. Nature Communications, 2021, 12, 2061.	12.8	11
188	Role of HLA-G in Viral Infections. Frontiers in Immunology, 2022, 13, 826074.	4.8	11
189	A phenotypic and functional characterization of NK cells in adenoids. Journal of Leukocyte Biology, 2007, 82, 1095-1105.	3.3	10
190	The human cytomegalovirus protein UL147A downregulates the most prevalent MICA allele: MICA*008, to evade NK cell-mediated killing. PLoS Pathogens, 2021, 17, e1008807.	4.7	10
191	A Unique Regulation Region in the 3′ UTR of HLA-G with a Promising Potential. International Journal of Molecular Sciences, 2020, 21, 900.	4.1	10
192	Candida albicans evades NK cell elimination via binding of Agglutinin-Like Sequence proteins to the checkpoint receptor TIGIT. Nature Communications, 2022, 13, 2463.	12.8	10
193	Suppression of human metapneumovirus (HMPV) infection by the innate sensing gene CEACAM1. Oncotarget, 2016, 7, 66468-66479.	1.8	9
194	Cytomegalovirus protein m154 perturbs the adaptor protein-1 compartment mediating broad-spectrum immune evasion. ELife, 2020, 9, .	6.0	9
195	NK-92 cells retain vitality and functionality when grown in standard cell culture conditions. PLoS ONE, 2022, 17, e0264897.	2.5	9
196	HLA-G Complexes Are Observed on the Cell Surface. Human Immunology, 2007, 68, 227-232.	2.4	8
197	The Association of MHC Class I Proteins with the 2B4 Receptor Inhibits Self-Killing of Human NK Cells. Journal of Immunology, 2010, 184, 2761-2768.	0.8	8
198	Metastamir-mediated immune evasion. Oncolmmunology, 2013, 2, e22245.	4.6	8

#	Article	IF	CITATIONS
199	Vigilin Regulates the Expression of the Stress-Induced Ligand MICB by Interacting with Its $5\hat{a}\in^2$ Untranslated Region. Journal of Immunology, 2017, 198, 3662-3670.	0.8	8
200	Decay of the Stress-Induced Ligand MICA Is Controlled by the Expression of an Alternative $3\hat{a}\in^2$ Untranslated Region. Journal of Immunology, 2018, 200, 2819-2825.	0.8	8
201	Identification of putative novel O-glycosylations in the NK killer receptor Ncr1 essential for its activity. Cell Discovery, 2015, 1, 15036.	6.7	7
202	Identification and Analysis of Natural Killer Cells in Murine Nasal Passages. PLoS ONE, 2015, 10, e0142920.	2.5	7
203	"Messieurs, c'est les microbes qui auront le dernier mot― Gentlemen, it is the microbes who have the last word (Louis Pasteur)— <i>Fusobacterium nucleatum</i> protect tumors from killing by immune cells. Oncolmmunology, 2015, 4, e1038690.	4.6	7
204	Expression and function of NKp46 W32R: the human homologous protein of mouse NKp46 W32R (Noé). Scientific Reports, 2017, 7, 40944.	3.3	7
205	NCR1â€deficiency diminishes the generation of protective murine cytomegalovirus antibodies by limiting follicular helper Tâ€cell maturation. European Journal of Immunology, 2017, 47, 1443-1456.	2.9	7
206	NK Cells Under Hypoxia: The Two Faces of Vascularization in Tumor and Pregnancy. Frontiers in Immunology, 0, 13, .	4.8	7
207	Obinutuzumab activates Fcl ³ RI more potently than other anti-CD20 antibodies in chronic lymphocytic leukemia (CLL). Oncolmmunology, 2018, 7, e1428158.	4.6	6
208	Methods to Identify and Characterize Different NK Cell Receptors and Their Ligands. Methods in Molecular Biology, 2010, 612, 249-273.	0.9	6
209	PILRα binds an unknown receptor expressed primarily on CD56bright and decidual-NK cells and activates NK cell functions. Oncotarget, 0, 7, 40953-40964.	1.8	6
210	Reduced KIR2DL1 Recognition of MHC Class I Molecules Presenting Phosphorylated Peptides. Journal of Immunology, 2006, 176, 6762-6769.	0.8	5
211	Natural killer cells control metastasis via structural editing of primary tumors in mice. Cancer Immunology, Immunotherapy, 2019, 68, 1721-1724.	4.2	4
212	The HHV-6A Proteins U20 and U21 Target NKG2D Ligands to Escape Immune Recognition. Frontiers in Immunology, 2021, 12, 714799.	4.8	4
213	Altered NKp46 Recognition and Elimination of Influenza B Viruses. Viruses, 2021, 13, 34.	3.3	4
214	Human Metapneumovirus Escapes NK Cell Recognition through the Downregulation of Stress-Induced Ligands for NKG2D. Viruses, 2020, 12, 781.	3.3	3
215	Anti-RhD antibody therapy modulates human natural killer cell function. Haematologica, 2020, 106, haematol.2019.238097.	3.5	3
216	Collection of Monoclonal Antibodies Targeting SARS-CoV-2 Proteins. Viruses, 2022, 14, 443.	3.3	3

0

#	Article	IF	CITATIONS
217	CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma. Nature, 1998, 392, 311-311.	27.8	2
218	Receptors on NK cells. , 2010, , 155-168.		2
219	The inhibitory receptor CD300a is essential for neutrophilâ€mediated clearance of urinary tract infection in mice. European Journal of Immunology, 2021, 51, 2218-2224.	2.9	2
220	Editorial introduction for Seminars in Immunopathology special issue on "Immune modulation, properties and models of CMVâ€. Seminars in Immunopathology, 2014, 36, 611-613.	6.1	1
221	A BW Reporter System for Studying Receptor-Ligand Interactions. Journal of Visualized Experiments, 2019, , .	0.3	1
222	CEACAM1 Activation by CbpF-Expressing E. coli. Frontiers in Cellular and Infection Microbiology, 2021, 11, 699015.	3.9	1
223	Novel APC-like properties of human NK cells directly regulate T cell activation. Journal of Clinical Investigation, 2015, 125, 1763-1763.	8.2	1
224	Quantification of Bacterial Attachment to Tissue Sections. Bio-protocol, 2018, 8, .	0.4	1
225	Novel approach to identify putative Epstein–Barr–virus microRNAs regulating host cell genes with relevance in tumor biology and immunology. Oncolmmunology, 2022, 11, 2070338.	4.6	1
226	Activation of CEACAM1 with an agonistic monoclonal antibody results in inhibition of melanoma cells. Cancer Gene Therapy, 0, , .	4.6	1
227	Tumor-Associated Antigen Peptides as Anti-Metastatic Vaccines. International Journal of Peptide Research and Therapeutics, 1998, 5, 323-328.	0.1	0
228	Tumor-associated antigen peptides as anti-metastatic vaccines. International Journal of Peptide Research and Therapeutics, 1998, 5, 323-328.	0.1	0
229	Immunogenicity of Human Embryonic Stem Cells. , 2004, , 663-674.		0
230	Control LPS or get killed. Blood, 2007, 109, 3614-3615.	1.4	0
231	Human cytomegalovirus miRNAs. Future Virology, 2011, 6, 909-916.	1.8	0

Natural Killer Cells at the Tumors Microenvironment. , 2008, , 171-193.