
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6870252/publications.pdf Version: 2024-02-01

LAUDI KODHONEN

#	Article	IF	CITATIONS
1	Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sensing of Environment, 2011, 115, 1065-1080.	11.0	305
2	Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sensing of Environment, 2017, 195, 259-274.	11.0	252
3	Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica, 2006, 40, .	1.3	243
4	LiDAR waveform features for tree species classification and their sensitivity to tree- and acquisition related parameters. Remote Sensing of Environment, 2016, 173, 224-237.	11.0	88
5	Seasonal variation in MODIS LAI for a boreal forest area in Finland. Remote Sensing of Environment, 2012, 126, 104-115.	11.0	82
6	Forestation of boreal peatlands: Impacts of changing albedo and greenhouse gas fluxes on radiative forcing. Journal of Geophysical Research, 2010, 115, .	3.3	64
7	Comparison of methods for measuring gap size distribution and canopy nonrandomness at J¤vselja RAMI (RAdiation transfer Model Intercomparison) test sites. Agricultural and Forest Meteorology, 2011, 151, 365-377.	4.8	64
8	Bayesian Approach to Tree Detection Based on Airborne Laser Scanning Data. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 2690-2699.	6.3	56
9	Use of airborne lidar for estimating canopy gap fraction and leaf area index of tropical montane forests. International Journal of Remote Sensing, 2015, 36, 2569-2583.	2.9	53
10	Nationwide airborne laser scanning based models for volume, biomass and dominant height in Finland. Silva Fennica, 2016, 50, .	1.3	53
11	Retrieving vegetation clumping index from Multi-angle Imaging SpectroRadiometer (MISR) data at 275m resolution. Remote Sensing of Environment, 2013, 138, 126-133.	11.0	46
12	Estimation of tree crown volume from airborne lidar data using computational geometry. International Journal of Remote Sensing, 2013, 34, 7236-7248.	2.9	46
13	Multispectral Airborne LiDAR Data in the Prediction of Boreal Tree Species Composition. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 3462-3471.	6.3	43
14	Local models for forest canopy cover with beta regression. Silva Fennica, 2007, 41, .	1.3	41
15	The use of airborne laser scanning to estimate sawlog volumes. Forestry, 2008, 81, 499-510.	2.3	36
16	Structural factors driving boreal forest albedo in Finland. Remote Sensing of Environment, 2016, 175, 43-51.	11.0	36
17	Laser-assisted selection of field plots for an area-based forest inventory. Silva Fennica, 2013, 47, .	1.3	36
18	Retrieval of boreal forest LAI using a forest reflectance model and empirical regressions. International Journal of Applied Earth Observation and Geoinformation, 2011, 13, 595-606.	2.8	34

#	Article	IF	CITATIONS
19	Comparison of multispectral airborne laser scanning and stereo matching of aerial images as a single sensor solution to forest inventories by tree species. Remote Sensing of Environment, 2019, 231, 111208.	11.0	32
20	Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129, 77-85.	11.1	31
21	Digital photography for tracking the phenology of an evergreen conifer stand. Agricultural and Forest Meteorology, 2017, 246, 15-21.	4.8	29
22	The accuracy of large-area forest canopy cover estimation using Landsat in boreal region. International Journal of Applied Earth Observation and Geoinformation, 2016, 53, 118-127.	2.8	28
23	Forest inventories for small areas using drone imagery without in-situ field measurements. Remote Sensing of Environment, 2020, 237, 111404.	11.0	27
24	Leaf Area Index (LAI) Estimation of Boreal Forest Using Wide Optics Airborne Winter Photos. Remote Sensing, 2009, 1, 1380-1394.	4.0	24
25	Effect of field plot location on estimating tropical forest above-ground biomass in Nepal using airborne laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 94, 55-62.	11.1	21
26	Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data. Silva Fennica, 2015, 49, .	1.3	21
27	Detection of the need for seedling stand tending using high-resolution remote sensing data. Silva Fennica, 2013, 47, .	1.3	21
28	Modelling lidar-derived boreal forest canopy cover with SPOT 4 HRVIR data. International Journal of Remote Sensing, 2013, 34, 8172-8181.	2.9	20
29	Automatic Segment-Level Tree Species Recognition Using High Resolution Aerial Winter Imagery. European Journal of Remote Sensing, 2016, 49, 239-259.	3.5	20
30	Comparison of linear regression, k-nearest neighbour and random forest methods in airborne laser-scanning-based prediction of growing stock. Forestry, 2021, 94, 311-323.	2.3	20
31	Backscattering of individual LiDAR pulses from forest canopies explained by photogrammetrically derived vegetation structure. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83, 81-93.	11.1	19
32	LiDAR-Based Estimates of Canopy Base Height for a Dense Uneven-Aged Structured Forest. Remote Sensing, 2020, 12, 1565.	4.0	19
33	Quantifying the missing link between forest albedo and productivity in the boreal zone. Biogeosciences, 2016, 13, 6015-6030.	3.3	18
34	Airborne Estimation of Boreal Forest LAI in Winter Conditions: A Test Using Summer and Winter Ground Truth. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 68-74.	6.3	16
35	Forest canopy structure and reflectance in humid tropical Borneo: A physically-based interpretation using spectral invariants. Remote Sensing of Environment, 2017, 201, 314-330.	11.0	16
36	Predicting stand age in managed forests using National Forest Inventory field data and airborne laser scanning. Forest Ecosystems, 2020, 7, .	3.1	16

#	Article	IF	CITATIONS
37	Tracking the Seasonal Dynamics of Boreal Forest Photosynthesis Using EO-1 Hyperion Reflectance: Sensitivity to Structural and Illumination Effects. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 5105-5116.	6.3	15
38	Bayesian inversion of a forest reflectance model using Sentinel-2 and Landsat 8 satellite images. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 233, 1-12.	2.3	15
39	Predicting forest growth based on airborne light detection and ranging data, climate data, and a simplified process-based model. Canadian Journal of Forest Research, 2013, 43, 364-375.	1.7	14
40	Training Area Concept in a Two-Phase Biomass Inventory Using Airborne Laser Scanning and RapidEye Satellite Data. Remote Sensing, 2014, 6, 285-309.	4.0	13
41	Calibration of nationwide airborne laser scanning based stem volume models. Remote Sensing of Environment, 2018, 210, 179-192.	11.0	13
42	Multispectral LiDAR-Based Estimation of Surface Fuel Load in a Dense Coniferous Forest. Remote Sensing, 2020, 12, 3333.	4.0	13
43	The transferability of airborne laser scanning based tree-level models between different inventory areas. Canadian Journal of Forest Research, 2019, 49, 228-236.	1.7	12
44	Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests. Biogeosciences, 2021, 18, 621-635.	3.3	12
45	Prediction of forest canopy fuel parameters in managed boreal forests using multispectral and unispectral airborne laser scanning data and aerial images. European Journal of Remote Sensing, 2020, 53, 245-257.	3.5	11
46	Estimation of Canopy Cover, Gap Fraction and Leaf Area Index with Airborne Laser Scanning. Managing Forest Ecosystems, 2014, , 397-417.	0.9	11
47	Effects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning. Canadian Journal of Forest Research, 2022, 52, 385-395.	1.7	11
48	A relascope for measuring canopy cover. Canadian Journal of Forest Research, 2008, 38, 2545-2550.	1.7	10
49	Predicting the occurrence of large-diameter trees using airborne laser scanning. Canadian Journal of Forest Research, 2016, 46, 461-469.	1.7	9
50	Using LiDAR-modified topographic wetness index, terrain attributes with leaf area index to improve a single-tree growth model in south-eastern Finland. Forestry, 2019, 92, 253-263.	2.3	9
51	Direct Estimation of Forest Leaf Area Index based on Spectrally Corrected Airborne LiDAR Pulse Penetration Ratio. Remote Sensing, 2020, 12, 217.	4.0	9
52	Prediction error aggregation behaviour for remote sensing augmented forest inventory approaches. Forestry, 2021, 94, 576-587.	2.3	8
53	Inventory of aspen trees in spruce dominated stands in conservation area. Forest Ecosystems, 2015, 2, .	3.1	7
54	Estimating the beyond-shoot foliage clumping at two contrasting points in the growing season using a variety of field-based methods. Trees - Structure and Function, 2017, 31, 1367-1373.	1.9	7

#	Article	IF	CITATIONS
55	How much can airborne laser scanning based forest inventory by tree species benefit from auxiliary optical data?. International Journal of Applied Earth Observation and Geoinformation, 2018, 72, 91-98.	2.8	7
56	Generating fine resolution leaf area index maps for boreal forests of Finland. , 2011, , .		6
57	Application of 3D triangulations of airborne laser scanning data to estimate boreal forest leaf area index. International Journal of Applied Earth Observation and Geoinformation, 2017, 59, 53-62.	2.8	6
58	Detection of European Aspen (Populus tremula L.) Based on an Unmanned Aerial Vehicle Approach in Boreal Forests. Remote Sensing, 2021, 13, 1723.	4.0	6
59	Transferability and calibration of airborne laser scanning based mixed-effects models to estimate the attributes of sawlog-sized Scots pines. Silva Fennica, 2019, 53, .	1.3	6
60	Airborne Measurements of Surface Albedo and Leaf Area Index of Snowâ€Covered Boreal Forest. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
61	A Comparison of Linear-Mode and Single-Photon Airborne LiDAR in Species-Specific Forest Inventories. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	5
62	Estimation of periodic annual increment of tree ring widths by airborne laser scanning. Canadian Journal of Forest Research, 2022, 52, 644-651.	1.7	5
63	Comparison of field and airborne laser scanning based crown cover estimates across land cover types in Kenya. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 409-415.	0.2	4
64	Estimation of Individual Tree Stem Biomass in an Uneven-Aged Structured Coniferous Forest Using Multispectral LiDAR Data. Remote Sensing, 2021, 13, 4827.	4.0	4
65	Estimation of boreal forest canopy cover with ground measurements, statistical models and remote sensing. Dissertationes Forestales, 2011, 2011, .	0.1	3
66	Estimation of boreal forest LAI in winter conditions: Test of a new method using wide optics airborne images. , 2010, , .		2
67	Boreal forest albedo and LAI in SNORTEX 2008–2010. , 2012, , .		2
68	Fusion of crown and trunk detections from airborne UAS based laser scanning for small area forest inventories. International Journal of Applied Earth Observation and Geoinformation, 2021, 100, 102327.	2.8	2
69	BACKSCATTERING OF INDIVIDUAL LIDAR PULSES FROM FOREST CANOPIES EXPLAINED BY PHOTOGRAMMETRICALLY DERIVED VEGETATION STRUCTURE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-1/W1, 171-176.	0.2	2
70	Bayesian approach to tree detection with airborne laser scanning. , 2012, , .		1
71	Estimating the clumping index at two contrasting points in the growing season using a variety of field-based methods. , 2016, , .		0
72	Transferability of ALS-based forest attribute models when predicting with drone-based image point cloud data. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102484.	2.8	0