
Stacy M Horner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6870132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14590-14595.	7.1	444
2	N6 -Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host and Microbe, 2016, 20, 654-665.	11.0	370
3	Visualization of Retroviral Replication in Living Cells Reveals Budding into Multivesicular Bodies. Traffic, 2003, 4, 785-801.	2.7	362
4	Posttranscriptional m 6 A Editing of HIV-1 mRNAs Enhances Viral Gene Expression. Cell Host and Microbe, 2016, 19, 675-685.	11.0	288
5	Regulation of hepatic innate immunity by hepatitis C virus. Nature Medicine, 2013, 19, 879-888.	30.7	264
6	Innate immune evasion strategies of DNA and RNA viruses. Current Opinion in Microbiology, 2016, 32, 113-119.	5.1	200
7	The Mitochondrial Targeting Chaperone 14-3-3Ĵµ Regulates a RIG-I Translocon that Mediates Membrane Association and Innate Antiviral Immunity. Cell Host and Microbe, 2012, 11, 528-537.	11.0	184
8	<i>N6</i> -methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8829-8834.	7.1	164
9	Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell, 2020, 183, 1185-1201.e20.	28.9	161
10	MAVS Coordination of Antiviral Innate Immunity. Journal of Virology, 2015, 89, 6974-6977.	3.4	139
11	Limits in the detection of m6A changes using MeRIP/m6A-seq. Scientific Reports, 2020, 10, 6590.	3.3	136
12	The favorable IFNL3 genotype escapes mRNA decay mediated by AU-rich elements and hepatitis C virus–induced microRNAs. Nature Immunology, 2014, 15, 72-79.	14.5	133
13	Altered m6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection. Molecular Cell, 2020, 77, 542-555.e8.	9.7	129
14	Regulation of Viral Infection by the RNA Modification <i>N6</i> -Methyladenosine. Annual Review of Virology, 2019, 6, 235-253.	6.7	111
15	Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nature Communications, 2020, 11, 6016.	12.8	111
16	Repression of the Human Papillomavirus E6 Gene Initiates p53-Dependent, Telomerase-Independent Senescence and Apoptosis in HeLa Cervical Carcinoma Cells. Journal of Virology, 2004, 78, 4063-4073.	3.4	95
17	Proteomic Analysis of Mitochondrial-Associated ER Membranes (MAM) during RNA Virus Infection Reveals Dynamic Changes in Protein and Organelle Trafficking. PLoS ONE, 2015, 10, e0117963.	2.5	91
18	Convergent Evolution of Escape from Hepaciviral Antagonism in Primates. PLoS Biology, 2012, 10, e1001282.	5.6	90

STACY M HORNER

#	Article	IF	CITATIONS
19	Intracellular Innate Immune Cascades and Interferon Defenses That Control Hepatitis C Virus. Journal of Interferon and Cytokine Research, 2009, 29, 489-498.	1.2	87
20	Pervasive tertiary structure in the dengue virus RNA genome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11513-11518.	7.1	81
21	RNA modifications go viral. PLoS Pathogens, 2017, 13, e1006188.	4.7	75
22	A potentially abundant junctional RNA motif stabilized by m6A and Mg2+. Nature Communications, 2018, 9, 2761.	12.8	66
23	Activation and Evasion of Antiviral Innate Immunity by Hepatitis C Virus. Journal of Molecular Biology, 2014, 426, 1198-1209.	4.2	63
24	Protect this house: cytosolic sensing of viruses. Current Opinion in Virology, 2017, 22, 36-43.	5.4	49
25	An Atlas of Genetic Variation Linking Pathogen-Induced Cellular Traits to Human Disease. Cell Host and Microbe, 2018, 24, 308-323.e6.	11.0	48
26	Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine. Cell Reports, 2021, 34, 108798.	6.4	46
27	The m ⁶ A reader IMP2 directs autoimmune inflammation through an IL-17– and TNFα-dependent C/EBP transcription factor axis. Science Immunology, 2021, 6, .	11.9	43
28	Control of Innate Immune Signaling and Membrane Targeting by the Hepatitis C Virus NS3/4A Protease Are Governed by the NS3 Helix α ₀ . Journal of Virology, 2012, 86, 3112-3120.	3.4	40
29	Hepatitis-C-virus-induced microRNAs dampen interferon-mediated antiviral signaling. Nature Medicine, 2016, 22, 1475-1481.	30.7	39
30	The mRNA Cap 2′- <i>O</i> -Methyltransferase CMTR1 Regulates the Expression of Certain Interferon-Stimulated Genes. MSphere, 2020, 5, .	2.9	39
31	Successes and Challenges on the Road to Cure Hepatitis C. PLoS Pathogens, 2015, 11, e1004854.	4.7	36
32	Cooperation between the Hepatitis C Virus p7 and NS5B Proteins Enhances Virion Infectivity. Journal of Virology, 2015, 89, 11523-11533.	3.4	32
33	Hepatitis C virus: strategies to evade antiviral responses. Future Virology, 2014, 9, 1061-1075.	1.8	31
34	IL-27 signaling activates skin cells to induce innate antiviral proteins and protects against Zika virus infection. Science Advances, 2020, 6, eaay3245.	10.3	29
35	N6-Methyladenosine Regulates Host Responses to Viral Infection. Trends in Biochemical Sciences, 2021, 46, 366-377.	7.5	28
36	Knotty Zika Virus Blocks Exonuclease to Produce Subgenomic Flaviviral RNAs. Cell Host and Microbe, 2017, 21, 1-2.	11.0	25

3

STACY M HORNER

#	Article	IF	CITATIONS
37	Hepatitis C Virus Infection Is Inhibited by a Noncanonical Antiviral Signaling Pathway Targeted by NS3-NS4A. Journal of Virology, 2019, 93, .	3.4	20
38	The small GTPase RAB1B promotes antiviral innate immunity by interacting with TNF receptor–associated factor 3 (TRAF3). Journal of Biological Chemistry, 2019, 294, 14231-14240.	3.4	19
39	How RNA modifications regulate the antiviral response. Immunological Reviews, 2021, 304, 169-180.	6.0	17
40	A Fluorescent Cell-Based System for Imaging Zika Virus Infection in Real-Time. Viruses, 2018, 10, 95.	3.3	15
41	The DNA Binding Domain of a Papillomavirus E2 Protein Programs a Chimeric Nuclease To Cleave Integrated Human Papillomavirus DNA in HeLa Cervical Carcinoma Cells. Journal of Virology, 2007, 81, 6254-6264.	3.4	12
42	FTO Suppresses STAT3 Activation and Modulates Proinflammatory Interferon-Stimulated Gene Expression. Journal of Molecular Biology, 2022, 434, 167247.	4.2	11
43	Signaling from the RNA sensor RIC-I is regulated by ufmylation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119531119.	7.1	11
44	Methods to Visualize MAVS Subcellular Localization. Methods in Molecular Biology, 2017, 1656, 131-142.	0.9	8
45	The acidic domain of the hepatitis C virus NS4A protein is required for viral assembly and envelopment through interactions with the viral E1 glycoprotein. PLoS Pathogens, 2019, 15, e1007163.	4.7	8
46	Flipping the script: viral capitalization of RNA modifications. Briefings in Functional Genomics, 2021, 20, 86-93.	2.7	6
47	Insights into antiviral innate immunity revealed by studying hepatitis C virus. Cytokine, 2015, 74, 190-197.	3.2	5
48	Measuring Hepatitis C Virus Envelopment by Using a Proteinase K Protection Assay. Methods in Molecular Biology, 2019, 1911, 209-217.	0.9	3
49	Defining the spatial relationship between hepatitis C virus infection and interferon-stimulated gene induction in the human liver. Hepatology, 2014, 59, 2065-2067.	7.3	2
50	RNA modification of an RNA modifier prevents self-RNA sensing. PLoS Biology, 2021, 19, e3001342.	5.6	0
51	Senescence Induced by Repression of Human Papillomavirus Oncogenes in Cervical Cancer Cells. , 2008, , 209-222.		0
52	Regulation of Innate Immunity and Interferon Defenses by Hepatitis C Virus. , 2012, , 245-269.		0