John D Salamone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686995/publications.pdf

Version: 2024-02-01

263 papers

21,019 citations

7096 78 h-index 133 g-index

265 all docs

 $\begin{array}{c} 265 \\ \text{docs citations} \end{array}$

265 times ranked 10507 citing authors

#	Article	IF	Citations
1	Complexities and paradoxes in understanding the role of dopamine in incentive motivation and instrumental action: Exertion of effort vs. anhedonia. Brain Research Bulletin, 2022, 182, 57-66.	3.0	21
2	Effects of the dopamine depleting agent tetrabenazine on detailed temporal parameters of effortâ€related choice responding. Journal of the Experimental Analysis of Behavior, 2022, 117, 331-345.	1.1	5
3	Using complex behavior to understand brain mechanisms in health and disease. Journal of the Experimental Analysis of Behavior, 2022, , .	1.1	1
4	Vigor, Effort-Related Aspects of Motivation and Anhedonia. Current Topics in Behavioral Neurosciences, 2022, , 325-353.	1.7	16
5	A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules, 2022, 12, 881.	4.0	14
6	The novel atypical dopamine transport inhibitor CT-005404 has pro-motivational effects in neurochemical and inflammatory models of effort-based dysfunctions related to psychopathology. Neuropharmacology, 2021, 183, 108325.	4.1	17
7	Differentiating effort-related aspects of motivation from reinforcement learning: commentary on Soder et al. "Dose–response effects of d-amphetamine on effort-based decision-making and reinforcement learning― Neuropsychopharmacology, 2021, 46, 1066-1067.	5.4	O
8	Sex differences in effort-related decision-making: role of dopamine D2 receptor antagonism. Psychopharmacology, 2021, 238, 1609-1619.	3.1	5
9	Impact of Caffeine on Ethanolâ€Induced Stimulation and Sensitization: Changes in ERK and DARPPâ€32 Phosphorylation in Nucleus Accumbens. Alcoholism: Clinical and Experimental Research, 2021, 45, 608-619.	2.4	5
10	Sex differences in lever pressing and running wheel tasks of effort-based choice behavior in rats: Suppression of high effort activity by the serotonin transport inhibitor fluoxetine. Pharmacology Biochemistry and Behavior, 2021, 202, 173115.	2.9	11
11	Enfermedad de Parkinson después de la psicocirugÃa para el tratamiento de la adicción a la cocaÃna. Revista De Psicologia De La Salud, 2021, 33, 273.	0.5	0
12	Impact of Fluoxetine on Behavioral Invigoration of Appetitive and Aversively Motivated Responses: Interaction With Dopamine Depletion. Frontiers in Behavioral Neuroscience, 2021, 15, 700182.	2.0	11
13	Energizing effects of bupropion on effortful behaviors in mice under positive and negative test conditions: modulation of DARPP-32 phosphorylation patterns. Psychopharmacology, 2021, 238, 3357-3373.	3.1	10
14	Pharmacological studies of effort-related decision making using mouse touchscreen procedures: effects of dopamine antagonism do not resemble reinforcer devaluation by removal of food restriction. Psychopharmacology, 2020, 237, 33-43.	3.1	31
15	Behavioral and dopamine transporter binding properties of the modafinil analog (S, S)-CE-158: reversal of the motivational effects of tetrabenazine and enhancement of progressive ratio responding. Psychopharmacology, 2020, 237, 3459-3470.	3.1	23
16	Effects of caffeine on ethanol-elicited place preference, place aversion and ERK phosphorylation in CD-1 mice. Journal of Psychopharmacology, 2020, 34, 1357-1370.	4.0	7
17	The non-selective adenosine antagonist theophylline reverses the effects of dopamine antagonism on tremor, motor activity and effort-based decision-making. Pharmacology Biochemistry and Behavior, 2020, 198, 173035.	2.9	8
18	The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures. Psychopharmacology, 2020, 237, 2845-2854.	3.1	12

#	Article	IF	CITATIONS
19	Effort-related decision making in humanized COMT mice: Effects of Val158Met polymorphisms and possible implications for negative symptoms in humans. Pharmacology Biochemistry and Behavior, 2020, 196, 172975.	2.9	4
20	Lisdexamfetamine suppresses instrumental and consummatory behaviors supported by foods with varying degrees of palatability: Exploration of a binge-like eating model. Pharmacology Biochemistry and Behavior, 2020, 189, 172851.	2.9	13
21	Preference for vigorous exercise versus sedentary sucrose drinking: an animal model of anergia induced by dopamine receptor antagonism. Behavioural Pharmacology, 2020, 31, 553-564.	1.7	19
22	The Novel Atypical Dopamine Uptake Inhibitor (S)-CE-123 Partially Reverses the Effort-Related Effects of the Dopamine Depleting Agent Tetrabenazine and Increases Progressive Ratio Responding. Frontiers in Pharmacology, 2019, 10, 682.	3.5	35
23	The Impact of Ethanol Plus Caffeine Exposure on Cognitive, Emotional, and Motivational Effects Related to Social Functioning., 2019,, 545-554.		0
24	Brain mechanisms underlying apathy. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 302-312.	1.9	109
25	Preference for Exercise vs. More Sedentary Reinforcers: Validation of an Animal Model of Tetrabenazine-Induced Anergia. Frontiers in Behavioral Neuroscience, 2019, 13, 289.	2.0	15
26	Individual differences in the energizing effects of caffeine on effort-based decision-making tests in rats. Pharmacology Biochemistry and Behavior, 2018, 169, 27-34.	2.9	16
27	250. Anergia and Effort-Related Aspects of Motivational Dysfunction in Animal Models of Depressive Symptoms: The Role of Mesolimbic Dopamine and Related Circuitry. Biological Psychiatry, 2018, 83, S101.	1.3	0
28	Partial reversal of the effort-related motivational effects of tetrabenazine with the MAO-B inhibitor deprenyl (selegiline): Implications for treating motivational dysfunctions. Pharmacology Biochemistry and Behavior, 2018, 166, 13-20.	2.9	8
29	The monoamine-oxidase B inhibitor deprenyl increases selection of high-effort activity in rats tested on a progressive ratio/chow feeding choice procedure: Implications for treating motivational dysfunctions. Behavioural Brain Research, 2018, 342, 27-34.	2.2	8
30	Neurobiology and pharmacology of activational and effort-related aspects of motivation: rodent studies. Current Opinion in Behavioral Sciences, 2018, 22, 114-120.	3.9	8
31	Parsing the Role of Mesolimbic Dopamine in Specific Aspects of Motivation: Behavioral Activation, Invigoration, and Effort-Based Decision Making. Advances in Motivation Science, 2018, 5, 129-167.	3.7	2
32	New Developments on the Adenosine Mechanisms of the Central Effects of Caffeine and Their Implications for Neuropsychiatric Disorders. Journal of Caffeine and Adenosine Research, 2018, 8, 121-130.	0.6	41
33	Caffeine Modulates Food Intake Depending on the Context That Gives Access to Food: Comparison With Dopamine Depletion. Frontiers in Psychiatry, 2018, 9, 411.	2.6	21
34	The Psychopharmacology of Effort-Related Decision Making: Dopamine, Adenosine, and Insights into the Neurochemistry of Motivation. Pharmacological Reviews, 2018, 70, 747-762.	16.0	79
35	Dopamine depletion shifts behavior from activity based reinforcers to more sedentary ones and adenosine receptor antagonism reverses that shift: Relation to ventral striatum DARPP32 phosphorylation patterns. Neuropharmacology, 2018, 138, 349-359.	4.1	24
36	Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Frontiers in Pharmacology, 2018, 9, 526.	3.5	74

#	Article	IF	CITATIONS
37	Dopamine, Effort-Based Choice, and Behavioral Economics: Basic and Translational Research. Frontiers in Behavioral Neuroscience, 2018, 12, 52.	2.0	92
38	Editorial: Ethanol, Its Active Metabolites, and Their Mechanisms of Action: Neurophysiological and Behavioral Effects. Frontiers in Behavioral Neuroscience, 2018, 12, 95.	2.0	3
39	DA Neurons Promote the Instigation and Maintenance of Effortful Responding: A Commentary on Fischbach-Weiss, Reese, and Janak. Neuroscience, 2018, 372, 316.	2.3	O
40	Desmotivadora evolución de la desconexión asimétrica del Núcleo Accumbens en el trastorno por consumo de cocaÃna: un punto de vista traslacional. Revista De Psicologia De La Salud, 2018, 30, 306.	0.5	0
41	Assessment of a glycine uptake inhibitor in animal models of effort-related choice behavior: implications for motivational dysfunctions. Psychopharmacology, 2017, 234, 1525-1534.	3.1	13
42	Adenosine A 2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala. Behavioural Brain Research, 2017, 321, 8-17.	2.2	37
43	Oral Ingestion and Intraventricular Injection of Curcumin Attenuates the Effort-Related Effects of the VMAT-2 Inhibitor Tetrabenazine: Implications for Motivational Symptoms of Depression. Journal of Natural Products, 2017, 80, 2839-2844.	3.0	11
44	Behavioral activation, effort-based choice, and elasticity of demand for motivational stimuli: Basic and translational neuroscience approaches Motivation Science, 2017, 3, 208-229.	1.6	27
45	Subthalamic and Cortical Local Field Potentials Associated with Pilocarpine-Induced Oral Tremor in the Rat. Frontiers in Behavioral Neuroscience, 2016, 10, 123.	2.0	3
46	Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A2A and A1 Receptors. Frontiers in Behavioral Neuroscience, 2016, 10, 206.	2.0	25
47	Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: Implications for treatment of effort-related motivational symptoms in psychopathology. Neuropharmacology, 2016, 109, 270-280.	4.1	64
48	Neurobiology of Effort and the Role of Mesolimbic Dopamine. Advances in Motivation and Achievement: A Research Annual, 2016, , 229-256.	0.3	3
49	Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. Brain, 2016, 139, 1325-1347.	7.6	267
50	Evaluation of the effort-related motivational effects of the novel dopamine uptake inhibitor PRX-14040. Pharmacology Biochemistry and Behavior, 2016, 148, 84-91.	2.9	37
51	Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology, 2016, 233, 3575-3586.	3.1	67
52	The pharmacology of effort-related choice behavior: Dopamine, depression, and individual differences. Behavioural Processes, 2016, 127, 3-17.	1.1	102
53	Effects of lisdexamfetamine and s-citalopram, alone and in combination, on effort-related choice behavior in the rat. Psychopharmacology, 2016, 233, 949-960.	3.1	61
54	Choosing voluntary exercise over sucrose consumption depends upon dopamine transmission: effects of haloperidol in wild type and adenosine A2AKO mice. Psychopharmacology, 2016, 233, 393-404.	3.1	52

#	Article	IF	CITATIONS
55	Induction of oral tremor in mice by the acetylcholinesterase inhibitor galantamine: Reversal with adenosine A2A antagonism. Pharmacology Biochemistry and Behavior, 2016, 140, 62-67.	2.9	7
56	The MAO-B inhibitor deprenyl reduces the oral tremor and the dopamine depletion induced by the VMAT-2 inhibitor tetrabenazine. Behavioural Brain Research, 2016, 298, 188-191.	2.2	13
57	Not All Antidepressants Are Created Equal: Differential Effects of Monoamine Uptake Inhibitors on Effort-Related Choice Behavior. Neuropsychopharmacology, 2016, 41, 686-694.	5.4	60
58	The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists. Pharmacology Biochemistry and Behavior, 2015, 135, 217-226.	2.9	87
59	Fluoxetine Administration Exacerbates Oral Tremor and Striatal Dopamine Depletion in a Rodent Pharmacological Model of Parkinsonism. Neuropsychopharmacology, 2015, 40, 2240-2247.	5.4	16
60	Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D1, D2, and D3 receptor antagonists. Psychopharmacology, 2015, 232, 2377-2391.	3.1	55
61	The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology, 2015, 232, 1313-1323.	3.1	84
62	Dopamine/Adenosine Interactions Related to Tremor in Animal Models of Parkinsonism. Current Topics in Neurotoxicity, 2015, , 149-162.	0.4	1
63	Bupropion Increases Selection of High Effort Activity in Rats Tested on a Progressive Ratio/Chow Feeding Choice Procedure: Implications for Treatment of Effort-Related Motivational Symptoms. International Journal of Neuropsychopharmacology, 2015, 18, pyu017-pyu017.	2.1	77
64	Mesolimbic Dopamine and the Regulation of Motivated Behavior. Current Topics in Behavioral Neurosciences, 2015, 27, 231-257.	1.7	149
65	Neurobiological basis of motivational deficits in psychopathology. European Neuropsychopharmacology, 2015, 25, 1225-1238.	0.7	68
66	Physiological and Behavioral Assessment of Tremor in Rodents. , 2015, , 631-640.		1
67	The renaissance of acetaldehyde as a psychoactive compound: decades in the making. Frontiers in Behavioral Neuroscience, 2014, 8, 249.	2.0	4
68	Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/ chow feeding choice task. Psychopharmacology, 2014, 231, 727-736.	3.1	91
69	Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: Studies using medium to high doses in animal models. Behavioural Brain Research, 2014, 270, 213-222.	2.2	24
70	The VMAT-2 Inhibitor Tetrabenazine Affects Effort-Related Decision Making in a Progressive Ratio/Chow Feeding Choice Task: Reversal with Antidepressant Drugs. PLoS ONE, 2014, 9, e99320.	2.5	82
71	Neusilin® influences curcumin bioavailability and antiâ€depressant efficacy in rats (1044.17). FASEB Journal, 2014, 28, 1044.17.	0.5	0
72	Deep brain stimulation of the subthalamic nucleus reverses oral tremor in pharmacological models of parkinsonism: interaction with the effects of adenosine A _{2A} antagonism. European Journal of Neuroscience, 2013, 38, 2183-2191.	2.6	18

#	Article	IF	CITATIONS
73	Insulin and Ventral Tegmental Dopamine: What's Impaired and What's Intact?. Cell Metabolism, 2013, 17, 469-470.	16.2	4
74	Tremorolytic effects of safinamide in animal models of drug-induced parkinsonian tremor. Pharmacology Biochemistry and Behavior, 2013, 105, 105-111.	2.9	31
75	Measuring reinforcement learning and motivation constructs in experimental animals: Relevance to the negative symptoms of schizophrenia. Neuroscience and Biobehavioral Reviews, 2013, 37, 2149-2165.	6.1	82
76	Behavioral effects of the novel potent cannabinoid CB1 agonist AM 4054. Pharmacology Biochemistry and Behavior, 2013, 109, 16-22.	2.9	15
77	The vesicular monoamine transporter (VMAT-2) inhibitor tetrabenazine induces tremulous jaw movements in rodents: Implications for pharmacological models of parkinsonian tremor. Neuroscience, 2013, 250, 507-519.	2.3	21
78	Effect of subtype-selective adenosine receptor antagonists on basal or haloperidol-regulated striatal function: Studies of exploratory locomotion and c-Fos immunoreactivity in outbred and A2AR KO mice. Behavioural Brain Research, 2013, 247, 217-226.	2.2	31
79	Conditional neural knockout of the adenosine A2A receptor and pharmacological A2A antagonism reduce pilocarpine-induced tremulous jaw movements: Studies with a mouse model of parkinsonian tremor. European Neuropsychopharmacology, 2013, 23, 972-977.	0.7	25
80	Dopamine and Food Addiction: Lexicon Badly Needed. Biological Psychiatry, 2013, 73, e15-e24.	1.3	60
81	Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: Effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors. Neuroscience and Biobehavioral Reviews, 2013, 37, 2015-2025.	6.1	110
82	Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents. Frontiers in Behavioral Neuroscience, 2013, 7, 81.	2.0	25
83	Effort-Related Motivational Effects of the VMAT-2 Inhibitor Tetrabenazine: Implications for Animal Models of the Motivational Symptoms of Depression. Journal of Neuroscience, 2013, 33, 19120-19130.	3.6	114
84	The Impact of Caffeine on the Behavioral Effects of Ethanol Related to Abuse and Addiction: A Review of Animal Studies. Journal of Caffeine Research, 2013, 3, 9-21.	0.9	36
85	F.7 - IMPACT OF CAFFEINE ON VOLUNTARY ETHANOL INTAKE AND THE ALCOHOL DEPRIVATION EFFECT IN MICE. Behavioural Pharmacology, 2013, 24, e51.	1.7	0
86	c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde. Frontiers in Behavioral Neuroscience, 2013, 7, 48.	2.0	10
87	The Role of Adenosine in the Ventral Striatal Circuits Regulating Behavioral Activation and Effort-Related Decision Making: Importance for Normal and Pathological Aspects of Motivation. , 2013, , 493-512.		4
88	The Mysterious Motivational Functions of Mesolimbic Dopamine. Neuron, 2012, 76, 470-485.	8.1	1,077
89	THE BEHAVIORAL PHARMACOLOGY OF EFFORTâ€RELATED CHOICE BEHAVIOR: DOPAMINE, ADENOSINE AND BEYOND. Journal of the Experimental Analysis of Behavior, 2012, 97, 125-146.	1.1	128
90	Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology, 2012, 62, 2068-2077.	4.1	108

#	Article	IF	Citations
91	The novel adenosine A2A antagonist prodrug MSX-4 is effective in animal models related to motivational and motor functions. Pharmacology Biochemistry and Behavior, 2012, 102, 477-487.	2.9	44
92	Extracellular GABA in globus pallidus increases during the induction of oral tremor by haloperidol but not by muscarinic receptor stimulation. Behavioural Brain Research, 2012, 234, 129-135.	2.2	14
93	Changes in nucleus accumbens and neostriatal câ€Fos and DARPPâ€32 immunoreactivity during different stages of foodâ€reinforced instrumental training. European Journal of Neuroscience, 2012, 35, 1354-1367.	2.6	31
94	Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neuroscience and Biobehavioral Reviews, 2012, 36, 404-430.	6.1	104
95	The novel adenosine A2A antagonist Lu AA47070 reverses the motor and motivational effects produced by dopamine D2 receptor blockade. Pharmacology Biochemistry and Behavior, 2012, 100, 498-505.	2.9	36
96	Dopaminergic Modulation of Effort-Related Choice Behavior as Assessed by a Progressive Ratio Chow Feeding Choice Task: Pharmacological Studies and the Role of Individual Differences. PLoS ONE, 2012, 7, e47934.	2.5	166
97	Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study. Neuroscience, 2011, 196, 178-188.	2.3	37
98	Pharmacological and Physiological Characterization of the Tremulous Jaw Movement Model of Parkinsonian Tremor: Potential Insights into the Pathophysiology of Tremor. Frontiers in Systems Neuroscience, 2011, 5, 49.	2.5	33
99	A role for accumbens neurons in exertion of effort and evaluating effort-related costs of instrumental actions (Commentary on Day etÂal.). European Journal of Neuroscience, 2011, 33, 306-307.	2.6	4
100	Oral tremor induced by galantamine in rats: A model of the parkinsonian side effects of cholinomimetics used to treat Alzheimer's disease. Pharmacology Biochemistry and Behavior, 2011, 99, 414-422.	2.9	31
101	Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat. Psychopharmacology, 2011, 213, 69-79.	3.1	30
102	Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists. Psychopharmacology, 2011, 216, 173-186.	3.1	44
103	Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone. Journal of Neuroscience, 2011, 31, 13078-13087.	3.6	45
104	Cannabinoid Cb1 Receptor Antagonists/Inverse Agonists and Food-Seeking Behavior., 2011,, 441-456.		0
105	Role of dopamine–adenosine interactions in the brain circuitry regulating effort-related decision making: insights into pathological aspects of motivation. Future Neurology, 2010, 5, 377-392.	0.5	33
106	Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX. Pharmacology Biochemistry and Behavior, 2010, 94, 561-569.	2.9	41
107	The CB1 inverse agonist AM251, but not the CB1 antagonist AM4113, enhances retention of contextual fear conditioning in rats. Pharmacology Biochemistry and Behavior, 2010, 95, 479-484.	2.9	45
108	Detailed analysis of food-reinforced operant lever pressing distinguishes effects of a cannabinoid CB1 inverse agonist and dopamine D1 and D2 antagonists. Pharmacology Biochemistry and Behavior, 2010, 96, 75-81.	2.9	7

#	Article	IF	Citations
109	The novel cannabinoid CB1 antagonist AM6545 suppresses food intake and food-reinforced behavior. Pharmacology Biochemistry and Behavior, 2010, 97, 179-184.	2.9	68
110	Immunocytochemistry Studies of Basal Ganglia Adenosine A2AReceptors in Rat and Human Tissue. Journal of Histotechnology, 2010, 33, 41-47.	0.5	4
111	Interactions between adenosine and dopamine receptor antagonists with different selectivity profiles: Effects on locomotor activity. Behavioural Brain Research, 2010, 211, 148-155.	2.2	45
112	Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors. Neuroscience, 2010, 166, 1056-1067.	2.3	103
113	Differential effects of selective adenosine antagonists on the effort-related impairments induced by dopamine D1 and D2 antagonism. Neuroscience, 2010, 170, 268-280.	2.3	72
114	Potential anxiogenic effects of cannabinoid CB1 receptor antagonists/inverse agonists in rats: Comparisons between AM4113, AM251, and the benzodiazepine inverse agonist FG-7142. European Neuropsychopharmacology, 2010, 20, 112-122.	0.7	69
115	Preladenant, a novel adenosine A(2A) receptor antagonist for the potential treatment of parkinsonism and other disorders. IDrugs: the Investigational Drugs Journal, 2010, 13, 723-31.	0.7	16
116	Dopamine, Behavioral Economics, and Effort. Frontiers in Behavioral Neuroscience, 2009, 3, 13.	2.0	231
117	Oral bioavailability of the novel cannabinoid CB1 antagonist AM6527: Effects on food-reinforced behavior and comparisons with AM4113. Pharmacology Biochemistry and Behavior, 2009, 91, 303-306.	2.9	37
118	The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology, 2009, 203, 489-499.	3.1	66
119	The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology, 2009, 204, 103-112.	3.1	105
120	Intracerebroventricular administration of cannabinoid CB1 receptor antagonists AM251 and AM4113 fails to alter food-reinforced behavior in rats. Psychopharmacology, 2009, 206, 223-232.	3.1	21
121	<i>Inâ€vitro</i> analysis of Pitx3 in mesodiencephalic dopaminergic neuron maturation. European Journal of Neuroscience, 2009, 29, 2264-2275.	2.6	11
122	Differential actions of adenosine A1 and A2A antagonists on the effort-related effects of dopamine D2 antagonism. Behavioural Brain Research, 2009, 201, 216-222.	2.2	88
123	Effects of the adenosine A2A antagonist KW 6002 (istradefylline) on pimozide-induced oral tremor and striatal c-Fos expression: comparisons with the muscarinic antagonist tropicamide. Neuroscience, 2009, 163, 97-108.	2.3	48
124	Infusions of acetaldehyde into the arcuate nucleus of the hypothalamus induce motor activity in rats. Life Sciences, 2009, 84, 321-327.	4.3	17
125	Dopamine/adenosine interactions involved in effort-related aspects of food motivation. Appetite, 2009, 53, 422-425.	3.7	55
126	Dopamine, effort, and decision making: Theoretical comment on Bardgett et al. (2009) Behavioral Neuroscience, 2009, 123, 463-467.	1.2	25

#	Article	IF	Citations
127	Involvement of Nucleus Accumbens Dopamine in Behavioral Activation and Effort-Related Functions. , 2009, , 286-300.		5
128	Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology, 2008, 196, 565-574.	3.1	93
129	Intra-accumbens injections of the adenosine A2A agonist CGS 21680 affect effort-related choice behavior in rats. Psychopharmacology, 2008, 199, 515-526.	3.1	93
130	Central vs. peripheral administration of ethanol, acetaldehyde and acetate in rats: Effects on lever pressing and response initiation. Pharmacology Biochemistry and Behavior, 2008, 89, 304-313.	2.9	19
131	Systemic administration of the adenosine A2A agonist CGS 21680 induces sedation at doses that suppress lever pressing and food intake. Pharmacology Biochemistry and Behavior, 2008, 89, 345-351.	2.9	32
132	A 5-HT2A receptor inverse agonist, ACP-103, reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey model. Pharmacology Biochemistry and Behavior, 2008, 90, 540-544.	2.9	68
133	In Vitro Generation of Dopaminergic Neurons from Adult Subventricular Zone Neural Progenitor Cells. Stem Cells and Development, 2008, 17, 157-172.	2.1	37
134	Forebrain circuitry involved in effort-related choice: Injections of the GABAA agonist muscimol into ventral pallidum alter response allocation in food-seeking behavior. Neuroscience, 2008, 152, 321-330.	2.3	94
135	Dopamine/adenosine interactions related to locomotion and tremor in animal models: Possible relevance to parkinsonism. Parkinsonism and Related Disorders, 2008, 14, S130-S134.	2.2	57
136	The cannabinoid CB1 receptor inverse agonist AM 251 and antagonist AM 4113 produce similar effects on the behavioral satiety sequence in rats. Behavioural Brain Research, 2008, 193, 298-305.	2.2	37
137	Nucleus Accumbens Adenosine A _{2A} Receptors Regulate Exertion of Effort by Acting on the Ventral Striatopallidal Pathway. Journal of Neuroscience, 2008, 28, 9037-9046.	3.6	120
138	The Novel Cannabinoid CB1 Receptor Neutral Antagonist AM4113 Suppresses Food Intake and Food-Reinforced Behavior but Does not Induce Signs of Nausea in Rats. Neuropsychopharmacology, 2008, 33, 946-955.	5.4	141
139	Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Frontiers in Bioscience - Landmark, 2008, Volume, 3594.	3.0	74
140	Cannabinoid CB1 receptor inverse agonists and neutral antagonists: Effects on food intake, food-reinforced behavior and food aversions. Physiology and Behavior, 2007, 91, 383-388.	2.1	127
141	Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats. Behavioural Brain Research, 2007, 178, 190-199.	2.2	48
142	Adenosine A2A receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology, 2007, 191, 579-586.	3.1	93
143	Functions of mesolimbic dopamine: changing concepts and shifting paradigms. Psychopharmacology, 2007, 191, 389-389.	3.1	56
144	Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 2007, 191, 461-482.	3.1	913

#	Article	IF	CITATIONS
145	The muscarinic receptor antagonist tropicamide suppresses tremulous jaw movements in a rodent model of parkinsonian tremor: possible role of M4 receptors. Psychopharmacology, 2007, 194, 347-359.	3.1	58
146	Comparison between multiple behavioral effects of peripheral ethanol administration in rats: Sedation, ataxia, and bradykinesia. Life Sciences, 2006, 79, 154-161.	4.3	81
147	WILL THE LAST PERSON WHO USES THE TERM 'REWARD' PLEASE TURN OUT THE LIGHTS? COMMENTS ON PROCESSES RELATED TO REINFORCEMENT, LEARNING, MOTIVATION AND EFFORT. Addiction Biology, 2006, 11, 43-44.	2.6	33
148	Neurobiology of Exercise. Obesity, 2006, 14, 345-356.	3.0	704
149	Suppression of food intake and food-reinforced behavior produced by the novel CB1 receptor antagonist/inverse agonist AM 1387. Pharmacology Biochemistry and Behavior, 2006, 83, 396-402.	2.9	38
150	Motor Stimulant Effects of Ethanol Injected into the Substantia Nigra Pars Reticulata: Importance of Catalase-Mediated Metabolism and the Role of Acetaldehyde. Neuropsychopharmacology, 2006, 31, 997-1008.	5.4	52
151	Nucleus Accumbens Dopamine and the Forebrain Circuitry Involved in Behavioral Activation and Effort-Related Decision Making: Implications for Understanding Anergia and Psychomotor Slowing in Depression. Current Psychiatry Reviews, 2006, 2, 267-280.	0.9	94
152	The novel cannabinoid agonist AM 411 produces a biphasic effect on accuracy in a visual target detection task in rats. Behavioural Pharmacology, 2005, 16, 477-486.	1.7	14
153	Ratio and time requirements on operant schedules: effortâ€related effects of nucleus accumbens dopamine depletions. European Journal of Neuroscience, 2005, 21, 1749-1757.	2.6	96
154	Validation of the tremulous jaw movement model for assessment of the motor effects of typical and atypical antipychotics: effects of pimozide (Orap) in rats. Pharmacology Biochemistry and Behavior, 2005, 80, 351-362.	2.9	39
155	Behavioral effects of the novel cannabinoid full agonist AM 411. Pharmacology Biochemistry and Behavior, 2005, 81, 78-88.	2.9	34
156	Quetiapine (Seroquel) shows a pattern of behavioral effects similar to the atypical antipsychotics clozapine and olanzapine: studies with tremulous jaw movements in rats. Psychopharmacology, 2005, 179, 383-392.	3.1	24
157	The cannabinoid CB1 antagonist AM 251 produces food avoidance and behaviors associated with nausea but does not impair feeding efficiency in rats. Psychopharmacology, 2005, 180, 286-293.	3.1	78
158	Dopamine agonists suppress cholinomimetic-induced tremulous jaw movements in an animal model of Parkinsonism: tremorolytic effects of pergolide, ropinirole and CY 208–243. Behavioural Brain Research, 2005, 156, 173-179.	2.2	45
159	Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Current Opinion in Pharmacology, 2005, 5, 34-41.	3.5	428
160	The GABA uptake inhibitor \hat{l}^2 -alanine reduces pilocarpine-induced tremor and increases extracellular GABA in substantia nigra pars reticulata as measured by microdialysis. Journal of Neuroscience Methods, 2004, 140, 39-46.	2.5	30
161	Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behavioural Brain Research, 2004, 151, 83-91.	2.2	113
162	Behavioral effects of inhibition of cannabinoid metabolism: The amidase inhibitor AM374 enhances the suppression of lever pressing produced by exogenously administered anandamide. Life Sciences, 2004, 74, 1001-1011.	4.3	18

#	Article	IF	Citations
163	The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behavioural Brain Research, 2004, 148, 47-54.	2.2	124
164	Local injections of the 5-hydroxytryptamine antagonist mianserin into substantia nigra pars reticulata block tremulous jaw movements in rats: studies with a putative model of Parkinsonian tremor. Psychopharmacology, 2003, 165, 229-237.	3.1	34
165	Motor effects of GABA A antagonism in globus pallidus: studies of locomotion and tremulous jaw movements in rats. Psychopharmacology, 2003, 170, 140-149.	3.1	27
166	Locomotor stimulant effects of intraventricular injections of low doses of ethanol in rats: acute and repeated administration. Psychopharmacology, 2003, 170, 368-375.	3.1	42
167	Open field locomotor effects in rats after intraventricular injections of ethanol and the ethanol metabolites acetaldehyde and acetate. Brain Research Bulletin, 2003, 62, 197-202.	3.0	92
168	Substantia nigra pars reticulata GABA is involved in the regulation of operant lever pressing: pharmacological and microdialysis studies. Neuroscience, 2003, 119, 759-766.	2.3	22
169	Brain implantations of engineered gaba-releasing cells suppress tremor in an animal model of Parkinsonism. Neuroscience, 2003, 119, 927-932.	2.3	22
170	Behavioral effects of intraventricular injections of low doses of ethanol, acetaldehyde, and acetate in rats: studies with low and high rate operant schedules. Behavioural Brain Research, 2003, 147, 203-210.	2.2	42
171	Nucleus Accumbens Dopamine and the Regulation of Effort in Food-Seeking Behavior: Implications for Studies of Natural Motivation, Psychiatry, and Drug Abuse. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 1-8.	2.5	397
172	The cannabinoid CB1 antagonists SR 141716A and AM 251 suppress food intake and food-reinforced behavior in a variety of tasks in rats. Behavioural Pharmacology, 2003, 14, 583-588.	1.7	155
173	Functional significance of nucleus accumbens dopamine: behavior, pharmacology and neurochemistry. Behavioural Brain Research, 2002, 137, 1.	2.2	14
174	Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research, 2002, 137, 3-25.	2.2	702
175	Nucleus accumbens dopamine and work requirements on interval schedules. Behavioural Brain Research, 2002, 137, 179-187.	2.2	113
176	Dopamine antagonists alter response allocation but do not suppress appetite for food in rats: contrast between the effects of SKF 83566, raclopride, and fenfluramine on a concurrent choice task. Psychopharmacology, 2002, 160, 371-380.	3.1	123
177	Interactions between dopamine D1 receptors and \hat{I}^3 -aminobutyric acid mechanisms in substantia nigra pars reticulata of the rat: neurochemical and behavioral studies. Psychopharmacology, 2002, 159, 229-237.	3.1	64
178	Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement. Neuroscience, 2001, 105, 863-870.	2.3	174
179	Neostriatal muscarinic receptor subtypes involved in the generation of tremulous jaw movements in rodents. Life Sciences, 2001, 68, 2579-2584.	4.3	49
180	Substantia nigra pars reticulata is a highly potent site of action for the behavioral effects of the D1 antagonist SCH 23390 in the rat. Psychopharmacology, 2001, 156, 32-41.	3.1	66

#	Article	IF	Citations
181	D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacology Biochemistry and Behavior, 2001, 69, 373-382.	2.9	195
182	Effects of H1 Antagonists on Cholinomimetic-Induced Tremulous Jaw Movements. Pharmacology Biochemistry and Behavior, 2000, 65, 683-689.	2.9	18
183	A critique of recent studies on placebo effects of antidepressants: importance of research on active placebos. Psychopharmacology, 2000, 152, 1-6.	3.1	13
184	Striatal and nigral D 1 mechanisms involved in the antiparkinsonian effects of SKF 82958 (APB): studies of tremulous jaw movements in rats. Psychopharmacology, 1999, 143, 72-81.	3.1	36
185	Behavioral assessment of atypical antipsychotics in rats: studies of the effects of olanzapine (Zyprexa). Psychopharmacology, 1999, 145, 309-316.	3.1	20
186	Effects of striatal injections of 8-bromo-cyclic-AMP on pilocarpine-induced tremulous jaw movements in rats. Brain Research, 1999, 829, 180-184.	2.2	21
187	Characterization of the muscarinic receptor subtype mediating pilocarpine-induced tremulous jaw movements in rats. European Journal of Pharmacology, 1999, 364, 7-11.	3.5	39
188	The Role of Ventrolateral Striatal Acetylcholine in the Production of Tacrine-Induced Jaw Movements. Pharmacology Biochemistry and Behavior, 1999, 62, 439-447.	2.9	40
189	Nucleus Accumbens Dopamine Depletions and Time-Constrained Progressive Ratio Performance. Pharmacology Biochemistry and Behavior, 1999, 64, 21-27.	2.9	76
190	Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: a microdialysis and behavioral investigation. Neuroscience, 1999, 91, 925-934.	2.3	56
191	Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience, 1999, 92, 545-552.	2.3	228
192	Temporal Measures of Human Finger Tapping: Effects of Age. Pharmacology Biochemistry and Behavior, 1998, 59, 445-449.	2.9	59
193	The Role of Accumbens Dopamine in Lever Pressing and Response Allocation: Effects of 6-OHDA Injected into Core and Dorsomedial Shell. Pharmacology Biochemistry and Behavior, 1998, 59, 557-566.	2.9	151
194	Sexual Behavior in Male Rats After Radiofrequency or Dopamine-Depleting Lesions in Nucleus Accumbens. Pharmacology Biochemistry and Behavior, 1998, 60, 585-592.	2.9	85
195	Effects of Dopamine Antagonists and Accumbens Dopamine Depletions on Time-Constrained Progressive-Ratio Performance. Pharmacology Biochemistry and Behavior, 1998, 61, 341-348.	2.9	177
196	Effects of subchronic administration of clozapine, thioridazine and haloperidol on tests related to extrapyramidal motor function in the rat. Psychopharmacology, 1998, 137, 61-66.	3.1	39
197	A detailed characterization of the effects of four cannabinoid agonists on operant lever pressing. Psychopharmacology, 1998, 137, 147-156.	3.1	41
198	Tremulous jaw movements in rats:a model of parkinsonian tremor. Progress in Neurobiology, 1998, 56, 591-611.	5.7	146

#	Article	IF	Citations
199	A microdialysis study of nucleus accumbens core and shell dopamine during operant responding in the rat. Neuroscience, 1998, 86, 1001-1009.	2.3	97
200	Behavioral and Electromyographic Characterization of the Local Frequency of Tacrine-induced Tremulous Jaw Movements. Physiology and Behavior, 1998, 64, 153-158.	2.1	35
201	Centrally-Acting Antagonist of Muscarinic M4 Receptors. Expert Opinion on Therapeutic Targets, 1997, 1, 93-95.	1.0	5
202	Impaired sexual response after lesions of the paraventricular nucleus of the hypothalamus in male rats Behavioral Neuroscience, 1997, 111, 1361-1367.	1.2	83
203	Tremulous jaw movements induced by the acetylcholinesterase inhibitor tacrine: effects of antiparkinsonian drugs. European Journal of Pharmacology, 1997, 322, 137-145.	3.5	70
204	Rats with partial striatal dopamine depletions exhibit robust and long-lasting behavioral deficits in a simple fixed-ratio bar-pressing task. Behavioural Brain Research, 1997, 86, 25-40.	2.2	57
205	Involvement of pallidal and nigral gaba mechanisms in the generation of tremulous jaw movements in rats. Neuroscience, 1997, 80, 535-544.	2.3	33
206	Lesions in Medial Preoptic Area and Bed Nucleus of Stria Terminalis: Differential Effects on Copulatory Behavior and Noncontact Erection in Male Rats. Journal of Neuroscience, 1997, 17, 5245-5253.	3.6	199
207	Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Biobehavioral Reviews, 1997, 21, 341-359.	6.1	489
208	Tremulous Jaw Movements Produced by Acute Tacrine Administration: Possible Relation to Parkinsonian Side Effects. Pharmacology Biochemistry and Behavior, 1997, 56, 273-279.	2.9	69
209	Tremulous Characteristics of the Vacuous Jaw Movements Induced by Pilocarpine and Ventrolateral Striatal Dopamine Depletions. Pharmacology Biochemistry and Behavior, 1997, 57, 243-249.	2.9	60
210	Motor Dysfunction Produced by Tacrine Administration in Rats. Pharmacology Biochemistry and Behavior, 1997, 58, 851-858.	2.9	34
211	Effects of clozapine, thioridazine, risperidone and haloperidol on behavioral tests related to extrapyramidal motor function. Psychopharmacology, 1997, 132, 74-81.	3.1	42
212	Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behavioural Brain Research, 1996, 74, 189-197.	2.2	195
213	Involvement of ventrolateral striatal dopamine in movement initiation and execution: A microdialysis and behavioral investigation. Neuroscience, 1996, 70, 849-859.	2.3	84
214	Vacuous jaw movements induced by acute reserpine and low-dose apomorphine: Possible model of parkinsonian tremor. Pharmacology Biochemistry and Behavior, 1996, 53, 179-183.	2.9	67
215	Effects of acute and repeated clozapine injections on cholinomimetic-induced vacuous jaw movements. Pharmacology Biochemistry and Behavior, 1996, 54, 619-624.	2.9	34
216	Skilled motor deficits in rats induced by ventrolateral striatal dopamine depletions: behavioral and pharmacological characterization. Brain Research, 1996, 732, 186-194.	2.2	43

#	Article	IF	CITATIONS
217	Different behavioral effects of haloperidol, clozapine and thioridazine in a concurrent lever pressing and feeding procedure. Psychopharmacology, 1996, 125, 105-112.	3.1	87
218	The behavioral neurochemistry of motivation: methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. Journal of Neuroscience Methods, 1996, 64, 137-149.	2.5	166
219	The effects of nucleus accumbens dopamine depletions on continuously reinforced operant responding: Contrasts with the effects of extinction. Pharmacology Biochemistry and Behavior, 1995, 50, 437-443.	2.9	69
220	Pharmacological characterization of performance on a concurrent lever pressing/feeding choice procedure: effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology, 1994, 116, 529-537.	3.1	123
221	The effects of haloperidol and clozapine on PCP- and amphetamine-induced suppression of social behavior in the rat. Pharmacology Biochemistry and Behavior, 1994, 47, 579-585.	2.9	74
222	Repeated scopolamine injections sensitize rats to pilocarpine-induced vacuous jaw movements and enhance striatal muscarinic receptor binding. Pharmacology Biochemistry and Behavior, 1994, 49, 437-442.	2.9	29
223	Nucleus accumbens dopamine release increases during instrumental lever pressing for food but not free food consumption. Pharmacology Biochemistry and Behavior, 1994, 49, 25-31.	2.9	168
224	Nucleus accumbens dopamine depletions in rats affect relative response allocation in a novel cost/benefit procedure. Pharmacology Biochemistry and Behavior, 1994, 49, 85-91.	2.9	159
225	Effects of dopamine depletions in the medial prefrontal cortex on active avoidance and escape in the rat. Brain Research, 1994, 651, 293-299.	2.2	33
226	Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Research, 1994, 642, 20-28.	2.2	139
227	Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behavioural Brain Research, 1994, 65, 221-229.	2.2	420
228	The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behavioural Brain Research, 1994, 61, 117-133.	2.2	530
229	Vacuous jaw movements in rats induced by acute reserpine administration: Interactions with different doses of apomorphine. Pharmacology Biochemistry and Behavior, 1993, 46, 793-797.	2.9	49
230	Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacology Biochemistry and Behavior, 1993, 46, 943-951.	2.9	152
231	Effects of acute haloperidol and reserpine administration on vacuous jaw movements in three different age groups of rats. Pharmacology Biochemistry and Behavior, 1993, 46, 405-409.	2.9	48
232	The role of nucleus accumbens dopamine in responding on a continuous reinforcement operant schedule: A neurochemical and behavioral study. Pharmacology Biochemistry and Behavior, 1993, 46, 581-586.	2.9	86
233	Vacuous jaw movements induced by sub-chronic administration of haloperidol: interactions with scopolamine. Psychopharmacology, 1993, 111, 99-105.	3.1	69
234	The role of brain dopamine in response initiation: effects of haloperidol and regionally specific dopamine depletions on the local rate of instrumental responding. Brain Research, 1993, 628, 218-226.	2,2	131

#	Article	IF	CITATIONS
235	The role of nucleus accumbens dopamine in the neurochemical and behavioral effects of phencyclidine: a microdialysis and behavioral study. Brain Research, 1993, 612, 263-270.	2.2	101
236	Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacology Biochemistry and Behavior, 1993, 44, 605-610.	2.9	159
237	A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience, 1993, 52, 919-925.	2.3	169
238	Increases in extracellular dopamine levels and locomotor activity after direct infusion of phencyclidine into the nucleus accumbens. Brain Research, 1992, 577, 1-9.	2.2	86
239	Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a microdialysis and behavioral study. Brain Research, 1992, 592, 29-36.	2.2	147
240	Complex motor and sensorimotor functions of striatal and accumbens dopamine: involvement in instrumental behavior processes. Psychopharmacology, 1992, 107, 160-174.	3.1	264
241	Anxiogenic drugs beta-CCE and FG 7142 increase extracellular dopamine levels in nucleus accumbens. Psychopharmacology, 1992, 109, 379-382.	3.1	97
242	Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology, 1991, 104, 515-521.	3.1	373
243	Lateral striatal cholinergic mechanisms involved in oral motor activities in the rat. Psychopharmacology, 1990, 102, 529-534.	3.1	100
244	Characterization of the impaired feeding behavior in rats given haloperidol or dopamine-depleting brain lesions. Neuroscience, 1990, 39, 17-24.	2.3	99
245	Paradoxical Kinesia in Parkinsonism Is Not Caused by Dopamine Release. Archives of Neurology, 1989, 46, 1070.	4.5	59
246	Behavioral activation in rats increases striatal dopamine metabolism measured by dialysis perfusion. Brain Research, 1989, 487, 215-224.	2.2	50
247	Transplantation of embryonic ventral forebrain grafts to the neocortex of rats with bilateral lesions of nucleus basalis magnocellularis ameliorates a lesion-induced deficit in spatial memory. Brain Research, 1988, 463, 192-197.	2.2	129
248	Place navigation in rats is impaired by lesions of medial septum and diagonal band but not nucleus basalis magnocellularis. Behavioural Brain Research, 1988, 27, 9-20.	2.2	413
249	Dopaminergic involvement in activational aspects of motivation: Effects of haloperidol on schedule-induced activity, feeding, and foraging in rats. Cognitive, Affective and Behavioral Neuroscience, 1988, 16, 196-206.	1.3	108
250	Synthesis and characterization of all four isomers of the muscarinic agonist, 2'-methylspiro[1-azabicyclo[2.2.2]octane-3,4'-[1,3]dioxolane]. Journal of Medicinal Chemistry, 1987, 30, 969-975.	6.4	33
251	The Actions of Neuroleptic Drugs on Appetitive Instrumental Behaviors. , 1987, , 575-608.		45
252	Behavioural functions of nucleus basalis magnocellularis and its relationship to dementia. Trends in Neurosciences, 1986, 9, 256-258.	8.6	27

#	Article	IF	CITATIONS
253	Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology, 1986, 88, 18-23.	3.1	91
254	Extracellular ascorbic acid increases in striatum following systemic amphetamine. Pharmacology Biochemistry and Behavior, 1984, 20, 609-612.	2.9	38
255	Impairment in T-maze reinforced alternation performance following nucleus basalis magnocellularis lesions in rats. Behavioural Brain Research, 1984, 13, 63-70.	2.2	121
256	Acetycholine and choline ion-selective microelectrodes. Analytica Chimica Acta, 1983, 146, 149-159.	5.4	31
257	Behavioral observation and intracerebral electrochemical recording following administration of amphetamine in rats. Pharmacology Biochemistry and Behavior, 1982, 17, 445-450.	2.9	21
258	Gas chromatographicâ€"mass spectrometric determination of glutamic acid decarboxylase activity in subregions of rat brain. Biomedical Applications, 1981, 225, 283-290.	1.7	7
259	Determination of dopamine, homovanillic acid and 3,4-dihydroxyphenylacetic acid in rat brain striatum by high-performance liquid chromatography with electrochemical detection. Biomedical Applications, 1981, 222, 353-362.	1.7	21
260	Simulation studies of in vivo electrochemistry. Computers & Chemistry, 1980, 4, 19-26.	1.2	23
261	An automated electrochemical method for in vivo monitoring of catecholamine release. Journal of Neuroscience Methods, 1980, 2, 373-388.	2.5	17
262	Fluorimetric Assay for the Determination of Glutamic Acid Decarboxylase Activity in Subregions of Rat Brain Tissue. Analytical Letters, 1980, 13, 1333-1344.	1.8	9
263	Microcomputer Controlled Multielectrode System for <i>in Vivo</i> Electrochemistry. Instrumentation Science and Technology, 1980, 10, 311-330.	1.8	21