John D Salamone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mysterious Motivational Functions of Mesolimbic Dopamine. Neuron, 2012, 76, 470-485.	8.1	1,077
2	Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 2007, 191, 461-482.	3.1	913
3	Neurobiology of Exercise. Obesity, 2006, 14, 345-356.	3.0	704
4	Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research, 2002, 137, 3-25.	2.2	702
5	The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behavioural Brain Research, 1994, 61, 117-133.	2.2	530
6	Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Biobehavioral Reviews, 1997, 21, 341-359.	6.1	489
7	Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Current Opinion in Pharmacology, 2005, 5, 34-41.	3.5	428
8	Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behavioural Brain Research, 1994, 65, 221-229.	2.2	420
9	Place navigation in rats is impaired by lesions of medial septum and diagonal band but not nucleus basalis magnocellularis. Behavioural Brain Research, 1988, 27, 9-20.	2.2	413
10	Nucleus Accumbens Dopamine and the Regulation of Effort in Food-Seeking Behavior: Implications for Studies of Natural Motivation, Psychiatry, and Drug Abuse. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 1-8.	2.5	397
11	Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology, 1991, 104, 515-521.	3.1	373
12	Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. Brain, 2016, 139, 1325-1347.	7.6	267
13	Complex motor and sensorimotor functions of striatal and accumbens dopamine: involvement in instrumental behavior processes. Psychopharmacology, 1992, 107, 160-174.	3.1	264
14	Dopamine, Behavioral Economics, and Effort. Frontiers in Behavioral Neuroscience, 2009, 3, 13.	2.0	231
15	Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience, 1999, 92, 545-552.	2.3	228
16	Lesions in Medial Preoptic Area and Bed Nucleus of Stria Terminalis: Differential Effects on Copulatory Behavior and Noncontact Erection in Male Rats. Journal of Neuroscience, 1997, 17, 5245-5253.	3.6	199
17	Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behavioural Brain Research, 1996, 74, 189-197.	2.2	195
18	D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacology Biochemistry and Behavior, 2001, 69, 373-382.	2.9	195

#	Article	IF	CITATIONS
19	Effects of Dopamine Antagonists and Accumbens Dopamine Depletions on Time-Constrained Progressive-Ratio Performance. Pharmacology Biochemistry and Behavior, 1998, 61, 341-348.	2.9	177
20	Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement. Neuroscience, 2001, 105, 863-870.	2.3	174
21	A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in in instrumental avoidance. Neuroscience, 1993, 52, 919-925.	2.3	169
22	Nucleus accumbens dopamine release increases during instrumental lever pressing for food but not free food consumption. Pharmacology Biochemistry and Behavior, 1994, 49, 25-31.	2.9	168
23	The behavioral neurochemistry of motivation: methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. Journal of Neuroscience Methods, 1996, 64, 137-149.	2.5	166
24	Dopaminergic Modulation of Effort-Related Choice Behavior as Assessed by a Progressive Ratio Chow Feeding Choice Task: Pharmacological Studies and the Role of Individual Differences. PLoS ONE, 2012, 7, e47934.	2.5	166
25	Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacology Biochemistry and Behavior, 1993, 44, 605-610.	2.9	159
26	Nucleus accumbens dopamine depletions in rats affect relative response allocation in a novel cost/benefit procedure. Pharmacology Biochemistry and Behavior, 1994, 49, 85-91.	2.9	159
27	The cannabinoid CB1 antagonists SR 141716A and AM 251 suppress food intake and food-reinforced behavior in a variety of tasks in rats. Behavioural Pharmacology, 2003, 14, 583-588.	1.7	155
28	Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacology Biochemistry and Behavior, 1993, 46, 943-951.	2.9	152
29	The Role of Accumbens Dopamine in Lever Pressing and Response Allocation: Effects of 6-OHDA Injected into Core and Dorsomedial Shell. Pharmacology Biochemistry and Behavior, 1998, 59, 557-566.	2.9	151
30	Mesolimbic Dopamine and the Regulation of Motivated Behavior. Current Topics in Behavioral Neurosciences, 2015, 27, 231-257.	1.7	149
31	Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a microdialysis and behavioral study. Brain Research, 1992, 592, 29-36.	2.2	147
32	Tremulous jaw movements in rats:a model of parkinsonian tremor. Progress in Neurobiology, 1998, 56, 591-611.	5.7	146
33	The Novel Cannabinoid CB1 Receptor Neutral Antagonist AM4113 Suppresses Food Intake and Food-Reinforced Behavior but Does not Induce Signs of Nausea in Rats. Neuropsychopharmacology, 2008, 33, 946-955.	5.4	141
34	Effects of dopamine depletions in the medial prefrontal cortex on DRL performance and motor activity in the rat. Brain Research, 1994, 642, 20-28.	2.2	139
35	The role of brain dopamine in response initiation: effects of haloperidol and regionally specific dopamine depletions on the local rate of instrumental responding. Brain Research, 1993, 628, 218-226.	2.2	131
36	Transplantation of embryonic ventral forebrain grafts to the neocortex of rats with bilateral lesions of nucleus basalis magnocellularis ameliorates a lesion-induced deficit in spatial memory. Brain Research, 1988, 463, 192-197.	2.2	129

#	Article	IF	CITATIONS
37	THE BEHAVIORAL PHARMACOLOGY OF EFFORTâ€RELATED CHOICE BEHAVIOR: DOPAMINE, ADENOSINE AND BEYOND. Journal of the Experimental Analysis of Behavior, 2012, 97, 125-146.	1.1	128
38	Cannabinoid CB1 receptor inverse agonists and neutral antagonists: Effects on food intake, food-reinforced behavior and food aversions. Physiology and Behavior, 2007, 91, 383-388.	2.1	127
39	The adenosine A2A antagonist KF17837 reverses the locomotor suppression and tremulous jaw movements induced by haloperidol in rats: possible relevance to parkinsonism. Behavioural Brain Research, 2004, 148, 47-54.	2.2	124
40	Pharmacological characterization of performance on a concurrent lever pressing/feeding choice procedure: effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology, 1994, 116, 529-537.	3.1	123
41	Dopamine antagonists alter response allocation but do not suppress appetite for food in rats: contrast between the effects of SKF 83566, raclopride, and fenfluramine on a concurrent choice task. Psychopharmacology, 2002, 160, 371-380.	3.1	123
42	Impairment in T-maze reinforced alternation performance following nucleus basalis magnocellularis lesions in rats. Behavioural Brain Research, 1984, 13, 63-70.	2.2	121
43	Nucleus Accumbens Adenosine A _{2A} Receptors Regulate Exertion of Effort by Acting on the Ventral Striatopallidal Pathway. Journal of Neuroscience, 2008, 28, 9037-9046.	3.6	120
44	Effort-Related Motivational Effects of the VMAT-2 Inhibitor Tetrabenazine: Implications for Animal Models of the Motivational Symptoms of Depression. Journal of Neuroscience, 2013, 33, 19120-19130.	3.6	114
45	Nucleus accumbens dopamine and work requirements on interval schedules. Behavioural Brain Research, 2002, 137, 179-187.	2.2	113
46	Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behavioural Brain Research, 2004, 151, 83-91.	2.2	113
47	Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: Effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors. Neuroscience and Biobehavioral Reviews, 2013, 37, 2015-2025.	6.1	110
48	Brain mechanisms underlying apathy. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 302-312.	1.9	109
49	Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology, 2012, 62, 2068-2077.	4.1	108
50	Dopaminergic involvement in activational aspects of motivation: Effects of haloperidol on schedule-induced activity, feeding, and foraging in rats. Cognitive, Affective and Behavioral Neuroscience, 1988, 16, 196-206.	1.3	108
51	The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology, 2009, 204, 103-112.	3.1	105
52	Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neuroscience and Biobehavioral Reviews, 2012, 36, 404-430.	6.1	104
53	Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors. Neuroscience, 2010, 166, 1056-1067.	2.3	103
54	The pharmacology of effort-related choice behavior: Dopamine, depression, and individual differences. Behavioural Processes, 2016, 127, 3-17.	1.1	102

#	Article	IF	CITATIONS
55	The role of nucleus accumbens dopamine in the neurochemical and behavioral effects of phencyclidine: a microdialysis and behavioral study. Brain Research, 1993, 612, 263-270.	2.2	101
56	Lateral striatal cholinergic mechanisms involved in oral motor activities in the rat. Psychopharmacology, 1990, 102, 529-534.	3.1	100
57	Characterization of the impaired feeding behavior in rats given haloperidol or dopamine-depleting brain lesions. Neuroscience, 1990, 39, 17-24.	2.3	99
58	Anxiogenic drugs beta-CCE and FG 7142 increase extracellular dopamine levels in nucleus accumbens. Psychopharmacology, 1992, 109, 379-382.	3.1	97
59	A microdialysis study of nucleus accumbens core and shell dopamine during operant responding in the rat. Neuroscience, 1998, 86, 1001-1009.	2.3	97
60	Ratio and time requirements on operant schedules: effortâ€related effects of nucleus accumbens dopamine depletions. European Journal of Neuroscience, 2005, 21, 1749-1757.	2.6	96
61	Nucleus Accumbens Dopamine and the Forebrain Circuitry Involved in Behavioral Activation and Effort-Related Decision Making: Implications for Understanding Anergia and Psychomotor Slowing in Depression. Current Psychiatry Reviews, 2006, 2, 267-280.	0.9	94
62	Forebrain circuitry involved in effort-related choice: Injections of the GABAA agonist muscimol into ventral pallidum alter response allocation in food-seeking behavior. Neuroscience, 2008, 152, 321-330.	2.3	94
63	Adenosine A2A receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology, 2007, 191, 579-586.	3.1	93
64	Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology, 2008, 196, 565-574.	3.1	93
65	Intra-accumbens injections of the adenosine A2A agonist CGS 21680 affect effort-related choice behavior in rats. Psychopharmacology, 2008, 199, 515-526.	3.1	93
66	Open field locomotor effects in rats after intraventricular injections of ethanol and the ethanol metabolites acetaldehyde and acetate. Brain Research Bulletin, 2003, 62, 197-202.	3.0	92
67	Dopamine, Effort-Based Choice, and Behavioral Economics: Basic and Translational Research. Frontiers in Behavioral Neuroscience, 2018, 12, 52.	2.0	92
68	Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology, 1986, 88, 18-23.	3.1	91
69	Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/ chow feeding choice task. Psychopharmacology, 2014, 231, 727-736.	3.1	91
70	Differential actions of adenosine A1 and A2A antagonists on the effort-related effects of dopamine D2 antagonism. Behavioural Brain Research, 2009, 201, 216-222.	2.2	88
71	Different behavioral effects of haloperidol, clozapine and thioridazine in a concurrent lever pressing and feeding procedure. Psychopharmacology, 1996, 125, 105-112.	3.1	87
72	The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists. Pharmacology Biochemistry and Behavior, 2015, 135, 217-226.	2.9	87

#	Article	IF	CITATIONS
73	Increases in extracellular dopamine levels and locomotor activity after direct infusion of phencyclidine into the nucleus accumbens. Brain Research, 1992, 577, 1-9.	2.2	86
74	The role of nucleus accumbens dopamine in responding on a continuous reinforcement operant schedule: A neurochemical and behavioral study. Pharmacology Biochemistry and Behavior, 1993, 46, 581-586.	2.9	86
75	Sexual Behavior in Male Rats After Radiofrequency or Dopamine-Depleting Lesions in Nucleus Accumbens. Pharmacology Biochemistry and Behavior, 1998, 60, 585-592.	2.9	85
76	Involvement of ventrolateral striatal dopamine in movement initiation and execution: A microdialysis and behavioral investigation. Neuroscience, 1996, 70, 849-859.	2.3	84
77	The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology, 2015, 232, 1313-1323.	3.1	84
78	Impaired sexual response after lesions of the paraventricular nucleus of the hypothalamus in male rats Behavioral Neuroscience, 1997, 111, 1361-1367.	1.2	83
79	Measuring reinforcement learning and motivation constructs in experimental animals: Relevance to the negative symptoms of schizophrenia. Neuroscience and Biobehavioral Reviews, 2013, 37, 2149-2165.	6.1	82
80	The VMAT-2 Inhibitor Tetrabenazine Affects Effort-Related Decision Making in a Progressive Ratio/Chow Feeding Choice Task: Reversal with Antidepressant Drugs. PLoS ONE, 2014, 9, e99320.	2.5	82
81	Comparison between multiple behavioral effects of peripheral ethanol administration in rats: Sedation, ataxia, and bradykinesia. Life Sciences, 2006, 79, 154-161.	4.3	81
82	The Psychopharmacology of Effort-Related Decision Making: Dopamine, Adenosine, and Insights into the Neurochemistry of Motivation. Pharmacological Reviews, 2018, 70, 747-762.	16.0	79
83	The cannabinoid CB1 antagonist AM 251 produces food avoidance and behaviors associated with nausea but does not impair feeding efficiency in rats. Psychopharmacology, 2005, 180, 286-293.	3.1	78
84	Bupropion Increases Selection of High Effort Activity in Rats Tested on a Progressive Ratio/Chow Feeding Choice Procedure: Implications for Treatment of Effort-Related Motivational Symptoms. International Journal of Neuropsychopharmacology, 2015, 18, pyu017-pyu017.	2.1	77
85	Nucleus Accumbens Dopamine Depletions and Time-Constrained Progressive Ratio Performance. Pharmacology Biochemistry and Behavior, 1999, 64, 21-27.	2.9	76
86	The effects of haloperidol and clozapine on PCP- and amphetamine-induced suppression of social behavior in the rat. Pharmacology Biochemistry and Behavior, 1994, 47, 579-585.	2.9	74
87	Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Frontiers in Pharmacology, 2018, 9, 526.	3.5	74
88	Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Frontiers in Bioscience - Landmark, 2008, Volume, 3594.	3.0	74
89	Differential effects of selective adenosine antagonists on the effort-related impairments induced by dopamine D1 and D2 antagonism. Neuroscience, 2010, 170, 268-280.	2.3	72
90	Tremulous jaw movements induced by the acetylcholinesterase inhibitor tacrine: effects of antiparkinsonian drugs. European Journal of Pharmacology, 1997, 322, 137-145.	3.5	70

#	Article	IF	CITATIONS
91	Vacuous jaw movements induced by sub-chronic administration of haloperidol: interactions with scopolamine. Psychopharmacology, 1993, 111, 99-105.	3.1	69
92	The effects of nucleus accumbens dopamine depletions on continuously reinforced operant responding: Contrasts with the effects of extinction. Pharmacology Biochemistry and Behavior, 1995, 50, 437-443.	2.9	69
93	Tremulous Jaw Movements Produced by Acute Tacrine Administration: Possible Relation to Parkinsonian Side Effects. Pharmacology Biochemistry and Behavior, 1997, 56, 273-279.	2.9	69
94	Potential anxiogenic effects of cannabinoid CB1 receptor antagonists/inverse agonists in rats: Comparisons between AM4113, AM251, and the benzodiazepine inverse agonist FG-7142. European Neuropsychopharmacology, 2010, 20, 112-122.	0.7	69
95	A 5-HT2A receptor inverse agonist, ACP-103, reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey model. Pharmacology Biochemistry and Behavior, 2008, 90, 540-544.	2.9	68
96	The novel cannabinoid CB1 antagonist AM6545 suppresses food intake and food-reinforced behavior. Pharmacology Biochemistry and Behavior, 2010, 97, 179-184.	2.9	68
97	Neurobiological basis of motivational deficits in psychopathology. European Neuropsychopharmacology, 2015, 25, 1225-1238.	0.7	68
98	Vacuous jaw movements induced by acute reserpine and low-dose apomorphine: Possible model of parkinsonian tremor. Pharmacology Biochemistry and Behavior, 1996, 53, 179-183.	2.9	67
99	Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology, 2016, 233, 3575-3586.	3.1	67
100	Substantia nigra pars reticulata is a highly potent site of action for the behavioral effects of the D1 antagonist SCH 23390 in the rat. Psychopharmacology, 2001, 156, 32-41.	3.1	66
101	The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology, 2009, 203, 489-499.	3.1	66
102	Interactions between dopamine D1 receptors and γ-aminobutyric acid mechanisms in substantia nigra pars reticulata of the rat: neurochemical and behavioral studies. Psychopharmacology, 2002, 159, 229-237.	3.1	64
103	Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: Implications for treatment of effort-related motivational symptoms in psychopathology. Neuropharmacology, 2016, 109, 270-280.	4.1	64
104	Effects of lisdexamfetamine and s-citalopram, alone and in combination, on effort-related choice behavior in the rat. Psychopharmacology, 2016, 233, 949-960.	3.1	61
105	Tremulous Characteristics of the Vacuous Jaw Movements Induced by Pilocarpine and Ventrolateral Striatal Dopamine Depletions. Pharmacology Biochemistry and Behavior, 1997, 57, 243-249.	2.9	60
106	Dopamine and Food Addiction: Lexicon Badly Needed. Biological Psychiatry, 2013, 73, e15-e24.	1.3	60
107	Not All Antidepressants Are Created Equal: Differential Effects of Monoamine Uptake Inhibitors on Effort-Related Choice Behavior. Neuropsychopharmacology, 2016, 41, 686-694.	5.4	60
108	Paradoxical Kinesia in Parkinsonism Is Not Caused by Dopamine Release. Archives of Neurology, 1989, 46, 1070.	4.5	59

#	Article	IF	CITATIONS
109	Temporal Measures of Human Finger Tapping: Effects of Age. Pharmacology Biochemistry and Behavior, 1998, 59, 445-449.	2.9	59
110	The muscarinic receptor antagonist tropicamide suppresses tremulous jaw movements in a rodent model of parkinsonian tremor: possible role of M4 receptors. Psychopharmacology, 2007, 194, 347-359.	3.1	58
111	Rats with partial striatal dopamine depletions exhibit robust and long-lasting behavioral deficits in a simple fixed-ratio bar-pressing task. Behavioural Brain Research, 1997, 86, 25-40.	2.2	57
112	Dopamine/adenosine interactions related to locomotion and tremor in animal models: Possible relevance to parkinsonism. Parkinsonism and Related Disorders, 2008, 14, S130-S134.	2.2	57
113	Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: a microdialysis and behavioral investigation. Neuroscience, 1999, 91, 925-934.	2.3	56
114	Functions of mesolimbic dopamine: changing concepts and shifting paradigms. Psychopharmacology, 2007, 191, 389-389.	3.1	56
115	Dopamine/adenosine interactions involved in effort-related aspects of food motivation. Appetite, 2009, 53, 422-425.	3.7	55
116	Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D1, D2, and D3 receptor antagonists. Psychopharmacology, 2015, 232, 2377-2391.	3.1	55
117	Motor Stimulant Effects of Ethanol Injected into the Substantia Nigra Pars Reticulata: Importance of Catalase-Mediated Metabolism and the Role of Acetaldehyde. Neuropsychopharmacology, 2006, 31, 997-1008.	5.4	52
118	Choosing voluntary exercise over sucrose consumption depends upon dopamine transmission: effects of haloperidol in wild type and adenosine A2AKO mice. Psychopharmacology, 2016, 233, 393-404.	3.1	52
119	Behavioral activation in rats increases striatal dopamine metabolism measured by dialysis perfusion. Brain Research, 1989, 487, 215-224.	2.2	50
120	Vacuous jaw movements in rats induced by acute reserpine administration: Interactions with different doses of apomorphine. Pharmacology Biochemistry and Behavior, 1993, 46, 793-797.	2.9	49
121	Neostriatal muscarinic receptor subtypes involved in the generation of tremulous jaw movements in rodents. Life Sciences, 2001, 68, 2579-2584.	4.3	49
122	Effects of acute haloperidol and reserpine administration on vacuous jaw movements in three different age groups of rats. Pharmacology Biochemistry and Behavior, 1993, 46, 405-409.	2.9	48
123	Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats. Behavioural Brain Research, 2007, 178, 190-199.	2.2	48
124	Effects of the adenosine A2A antagonist KW 6002 (istradefylline) on pimozide-induced oral tremor and striatal c-Fos expression: comparisons with the muscarinic antagonist tropicamide. Neuroscience, 2009, 163, 97-108.	2.3	48
125	Dopamine agonists suppress cholinomimetic-induced tremulous jaw movements in an animal model of Parkinsonism: tremorolytic effects of pergolide, ropinirole and CY 208–243. Behavioural Brain Research, 2005, 156, 173-179.	2.2	45
126	The CB1 inverse agonist AM251, but not the CB1 antagonist AM4113, enhances retention of contextual fear conditioning in rats. Pharmacology Biochemistry and Behavior, 2010, 95, 479-484.	2.9	45

#	Article	IF	CITATIONS
127	Interactions between adenosine and dopamine receptor antagonists with different selectivity profiles: Effects on locomotor activity. Behavioural Brain Research, 2010, 211, 148-155.	2.2	45
128	Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone. Journal of Neuroscience, 2011, 31, 13078-13087.	3.6	45
129	The Actions of Neuroleptic Drugs on Appetitive Instrumental Behaviors. , 1987, , 575-608.		45
130	Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists. Psychopharmacology, 2011, 216, 173-186.	3.1	44
131	The novel adenosine A2A antagonist prodrug MSX-4 is effective in animal models related to motivational and motor functions. Pharmacology Biochemistry and Behavior, 2012, 102, 477-487.	2.9	44
132	Skilled motor deficits in rats induced by ventrolateral striatal dopamine depletions: behavioral and pharmacological characterization. Brain Research, 1996, 732, 186-194.	2.2	43
133	Effects of clozapine, thioridazine, risperidone and haloperidol on behavioral tests related to extrapyramidal motor function. Psychopharmacology, 1997, 132, 74-81.	3.1	42
134	Locomotor stimulant effects of intraventricular injections of low doses of ethanol in rats: acute and repeated administration. Psychopharmacology, 2003, 170, 368-375.	3.1	42
135	Behavioral effects of intraventricular injections of low doses of ethanol, acetaldehyde, and acetate in rats: studies with low and high rate operant schedules. Behavioural Brain Research, 2003, 147, 203-210.	2.2	42
136	A detailed characterization of the effects of four cannabinoid agonists on operant lever pressing. Psychopharmacology, 1998, 137, 147-156.	3.1	41
137	Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX. Pharmacology Biochemistry and Behavior, 2010, 94, 561-569.	2.9	41
138	New Developments on the Adenosine Mechanisms of the Central Effects of Caffeine and Their Implications for Neuropsychiatric Disorders. Journal of Caffeine and Adenosine Research, 2018, 8, 121-130.	0.6	41
139	The Role of Ventrolateral Striatal Acetylcholine in the Production of Tacrine-Induced Jaw Movements. Pharmacology Biochemistry and Behavior, 1999, 62, 439-447.	2.9	40
140	Effects of subchronic administration of clozapine, thioridazine and haloperidol on tests related to extrapyramidal motor function in the rat. Psychopharmacology, 1998, 137, 61-66.	3.1	39
141	Characterization of the muscarinic receptor subtype mediating pilocarpine-induced tremulous jaw movements in rats. European Journal of Pharmacology, 1999, 364, 7-11.	3.5	39
142	Validation of the tremulous jaw movement model for assessment of the motor effects of typical and atypical antipychotics: effects of pimozide (Orap) in rats. Pharmacology Biochemistry and Behavior, 2005, 80, 351-362.	2.9	39
143	Extracellular ascorbic acid increases in striatum following systemic amphetamine. Pharmacology Biochemistry and Behavior, 1984, 20, 609-612.	2.9	38
144	Suppression of food intake and food-reinforced behavior produced by the novel CB1 receptor antagonist/inverse agonist AM 1387. Pharmacology Biochemistry and Behavior, 2006, 83, 396-402.	2.9	38

#	Article	IF	CITATIONS
145	In Vitro Generation of Dopaminergic Neurons from Adult Subventricular Zone Neural Progenitor Cells. Stem Cells and Development, 2008, 17, 157-172.	2.1	37
146	The cannabinoid CB1 receptor inverse agonist AM 251 and antagonist AM 4113 produce similar effects on the behavioral satiety sequence in rats. Behavioural Brain Research, 2008, 193, 298-305.	2.2	37
147	Oral bioavailability of the novel cannabinoid CB1 antagonist AM6527: Effects on food-reinforced behavior and comparisons with AM4113. Pharmacology Biochemistry and Behavior, 2009, 91, 303-306.	2.9	37
148	Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study. Neuroscience, 2011, 196, 178-188.	2.3	37
149	Evaluation of the effort-related motivational effects of the novel dopamine uptake inhibitor PRX-14040. Pharmacology Biochemistry and Behavior, 2016, 148, 84-91.	2.9	37
150	Adenosine A 2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala. Behavioural Brain Research, 2017, 321, 8-17.	2.2	37
151	Striatal and nigral D 1 mechanisms involved in the antiparkinsonian effects of SKF 82958 (APB): studies of tremulous jaw movements in rats. Psychopharmacology, 1999, 143, 72-81.	3.1	36
152	The novel adenosine A2A antagonist Lu AA47070 reverses the motor and motivational effects produced by dopamine D2 receptor blockade. Pharmacology Biochemistry and Behavior, 2012, 100, 498-505.	2.9	36
153	The Impact of Caffeine on the Behavioral Effects of Ethanol Related to Abuse and Addiction: A Review of Animal Studies. Journal of Caffeine Research, 2013, 3, 9-21.	0.9	36
154	Behavioral and Electromyographic Characterization of the Local Frequency of Tacrine-induced Tremulous Jaw Movements. Physiology and Behavior, 1998, 64, 153-158.	2.1	35
155	The Novel Atypical Dopamine Uptake Inhibitor (S)-CE-123 Partially Reverses the Effort-Related Effects of the Dopamine Depleting Agent Tetrabenazine and Increases Progressive Ratio Responding. Frontiers in Pharmacology, 2019, 10, 682.	3.5	35
156	Effects of acute and repeated clozapine injections on cholinomimetic-induced vacuous jaw movements. Pharmacology Biochemistry and Behavior, 1996, 54, 619-624.	2.9	34
157	Motor Dysfunction Produced by Tacrine Administration in Rats. Pharmacology Biochemistry and Behavior, 1997, 58, 851-858.	2.9	34
158	Local injections of the 5-hydroxytryptamine antagonist mianserin into substantia nigra pars reticulata block tremulous jaw movements in rats: studies with a putative model of Parkinsonian tremor. Psychopharmacology, 2003, 165, 229-237.	3.1	34
159	Behavioral effects of the novel cannabinoid full agonist AM 411. Pharmacology Biochemistry and Behavior, 2005, 81, 78-88.	2.9	34
160	Synthesis and characterization of all four isomers of the muscarinic agonist, 2'-methylspiro[1-azabicyclo[2.2.2]octane-3,4'-[1,3]dioxolane]. Journal of Medicinal Chemistry, 1987, 30, 969-975.	6.4	33
161	Effects of dopamine depletions in the medial prefrontal cortex on active avoidance and escape in the rat. Brain Research, 1994, 651, 293-299.	2.2	33
162	Involvement of pallidal and nigral gaba mechanisms in the generation of tremulous jaw movements in rats. Neuroscience, 1997, 80, 535-544.	2.3	33

#	Article	IF	CITATIONS
163	WILL THE LAST PERSON WHO USES THE TERM 'REWARD' PLEASE TURN OUT THE LIGHTS? COMMENTS ON PROCESSES RELATED TO REINFORCEMENT, LEARNING, MOTIVATION AND EFFORT. Addiction Biology, 2006, 11, 43-44.	2.6	33
164	Role of dopamine–adenosine interactions in the brain circuitry regulating effort-related decision making: insights into pathological aspects of motivation. Future Neurology, 2010, 5, 377-392.	0.5	33
165	Pharmacological and Physiological Characterization of the Tremulous Jaw Movement Model of Parkinsonian Tremor: Potential Insights into the Pathophysiology of Tremor. Frontiers in Systems Neuroscience, 2011, 5, 49.	2.5	33
166	Systemic administration of the adenosine A2A agonist CCS 21680 induces sedation at doses that suppress lever pressing and food intake. Pharmacology Biochemistry and Behavior, 2008, 89, 345-351.	2.9	32
167	Acetycholine and choline ion-selective microelectrodes. Analytica Chimica Acta, 1983, 146, 149-159.	5.4	31
168	Oral tremor induced by galantamine in rats: A model of the parkinsonian side effects of cholinomimetics used to treat Alzheimer's disease. Pharmacology Biochemistry and Behavior, 2011, 99, 414-422.	2.9	31
169	Changes in nucleus accumbens and neostriatal câ€Fos and DARPPâ€32 immunoreactivity during different stages of foodâ€reinforced instrumental training. European Journal of Neuroscience, 2012, 35, 1354-1367.	2.6	31
170	Tremorolytic effects of safinamide in animal models of drug-induced parkinsonian tremor. Pharmacology Biochemistry and Behavior, 2013, 105, 105-111.	2.9	31
171	Effect of subtype-selective adenosine receptor antagonists on basal or haloperidol-regulated striatal function: Studies of exploratory locomotion and c-Fos immunoreactivity in outbred and A2AR KO mice. Behavioural Brain Research, 2013, 247, 217-226.	2.2	31
172	Pharmacological studies of effort-related decision making using mouse touchscreen procedures: effects of dopamine antagonism do not resemble reinforcer devaluation by removal of food restriction. Psychopharmacology, 2020, 237, 33-43.	3.1	31
173	The GABA uptake inhibitor β-alanine reduces pilocarpine-induced tremor and increases extracellular GABA in substantia nigra pars reticulata as measured by microdialysis. Journal of Neuroscience Methods, 2004, 140, 39-46.	2.5	30
174	Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat. Psychopharmacology, 2011, 213, 69-79.	3.1	30
175	Repeated scopolamine injections sensitize rats to pilocarpine-induced vacuous jaw movements and enhance striatal muscarinic receptor binding. Pharmacology Biochemistry and Behavior, 1994, 49, 437-442.	2.9	29
176	Behavioural functions of nucleus basalis magnocellularis and its relationship to dementia. Trends in Neurosciences, 1986, 9, 256-258.	8.6	27
177	Motor effects of GABA A antagonism in globus pallidus: studies of locomotion and tremulous jaw movements in rats. Psychopharmacology, 2003, 170, 140-149.	3.1	27
178	Behavioral activation, effort-based choice, and elasticity of demand for motivational stimuli: Basic and translational neuroscience approaches Motivation Science, 2017, 3, 208-229.	1.6	27
179	Dopamine, effort, and decision making: Theoretical comment on Bardgett et al. (2009) Behavioral Neuroscience, 2009, 123, 463-467.	1.2	25
180	Conditional neural knockout of the adenosine A2A receptor and pharmacological A2A antagonism reduce pilocarpine-induced tremulous jaw movements: Studies with a mouse model of parkinsonian tremor. European Neuropsychopharmacology, 2013, 23, 972-977.	0.7	25

#	Article	IF	CITATIONS
181	Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents. Frontiers in Behavioral Neuroscience, 2013, 7, 81.	2.0	25
182	Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A2A and A1 Receptors. Frontiers in Behavioral Neuroscience, 2016, 10, 206.	2.0	25
183	Quetiapine (Seroquel) shows a pattern of behavioral effects similar to the atypical antipsychotics clozapine and olanzapine: studies with tremulous jaw movements in rats. Psychopharmacology, 2005, 179, 383-392.	3.1	24
184	Differences between the nonselective adenosine receptor antagonists caffeine and theophylline in motor and mood effects: Studies using medium to high doses in animal models. Behavioural Brain Research, 2014, 270, 213-222.	2.2	24
185	Dopamine depletion shifts behavior from activity based reinforcers to more sedentary ones and adenosine receptor antagonism reverses that shift: Relation to ventral striatum DARPP32 phosphorylation patterns. Neuropharmacology, 2018, 138, 349-359.	4.1	24
186	Simulation studies of in vivo electrochemistry. Computers & Chemistry, 1980, 4, 19-26.	1.2	23
187	Behavioral and dopamine transporter binding properties of the modafinil analog (S, S)-CE-158: reversal of the motivational effects of tetrabenazine and enhancement of progressive ratio responding. Psychopharmacology, 2020, 237, 3459-3470.	3.1	23
188	Substantia nigra pars reticulata GABA is involved in the regulation of operant lever pressing: pharmacological and microdialysis studies. Neuroscience, 2003, 119, 759-766.	2.3	22
189	Brain implantations of engineered gaba-releasing cells suppress tremor in an animal model of Parkinsonism. Neuroscience, 2003, 119, 927-932.	2.3	22
190	Microcomputer Controlled Multielectrode System for <i>in Vivo</i> Electrochemistry. Instrumentation Science and Technology, 1980, 10, 311-330.	1.8	21
191	Determination of dopamine, homovanillic acid and 3,4-dihydroxyphenylacetic acid in rat brain striatum by high-performance liquid chromatography with electrochemical detection. Biomedical Applications, 1981, 222, 353-362.	1.7	21
192	Behavioral observation and intracerebral electrochemical recording following administration of amphetamine in rats. Pharmacology Biochemistry and Behavior, 1982, 17, 445-450.	2.9	21
193	Effects of striatal injections of 8-bromo-cyclic-AMP on pilocarpine-induced tremulous jaw movements in rats. Brain Research, 1999, 829, 180-184.	2.2	21
194	Intracerebroventricular administration of cannabinoid CB1 receptor antagonists AM251 and AM4113 fails to alter food-reinforced behavior in rats. Psychopharmacology, 2009, 206, 223-232.	3.1	21
195	The vesicular monoamine transporter (VMAT-2) inhibitor tetrabenazine induces tremulous jaw movements in rodents: Implications for pharmacological models of parkinsonian tremor. Neuroscience, 2013, 250, 507-519.	2.3	21
196	Caffeine Modulates Food Intake Depending on the Context That Gives Access to Food: Comparison With Dopamine Depletion. Frontiers in Psychiatry, 2018, 9, 411.	2.6	21
197	Complexities and paradoxes in understanding the role of dopamine in incentive motivation and instrumental action: Exertion of effort vs. anhedonia. Brain Research Bulletin, 2022, 182, 57-66.	3.0	21
198	Behavioral assessment of atypical antipsychotics in rats: studies of the effects of olanzapine (Zyprexa). Psychopharmacology, 1999, 145, 309-316.	3.1	20

#	Article	IF	CITATIONS
199	Central vs. peripheral administration of ethanol, acetaldehyde and acetate in rats: Effects on lever pressing and response initiation. Pharmacology Biochemistry and Behavior, 2008, 89, 304-313.	2.9	19
200	Preference for vigorous exercise versus sedentary sucrose drinking: an animal model of anergia induced by dopamine receptor antagonism. Behavioural Pharmacology, 2020, 31, 553-564.	1.7	19
201	Effects of H1 Antagonists on Cholinomimetic-Induced Tremulous Jaw Movements. Pharmacology Biochemistry and Behavior, 2000, 65, 683-689.	2.9	18
202	Behavioral effects of inhibition of cannabinoid metabolism: The amidase inhibitor AM374 enhances the suppression of lever pressing produced by exogenously administered anandamide. Life Sciences, 2004, 74, 1001-1011.	4.3	18
203	Deep brain stimulation of the subthalamic nucleus reverses oral tremor in pharmacological models of parkinsonism: interaction with the effects of adenosine A _{2A} antagonism. European Journal of Neuroscience, 2013, 38, 2183-2191.	2.6	18
204	An automated electrochemical method for in vivo monitoring of catecholamine release. Journal of Neuroscience Methods, 1980, 2, 373-388.	2.5	17
205	Infusions of acetaldehyde into the arcuate nucleus of the hypothalamus induce motor activity in rats. Life Sciences, 2009, 84, 321-327.	4.3	17
206	The novel atypical dopamine transport inhibitor CT-005404 has pro-motivational effects in neurochemical and inflammatory models of effort-based dysfunctions related to psychopathology. Neuropharmacology, 2021, 183, 108325.	4.1	17
207	Fluoxetine Administration Exacerbates Oral Tremor and Striatal Dopamine Depletion in a Rodent Pharmacological Model of Parkinsonism. Neuropsychopharmacology, 2015, 40, 2240-2247.	5.4	16
208	Individual differences in the energizing effects of caffeine on effort-based decision-making tests in rats. Pharmacology Biochemistry and Behavior, 2018, 169, 27-34.	2.9	16
209	Preladenant, a novel adenosine A(2A) receptor antagonist for the potential treatment of parkinsonism and other disorders. IDrugs: the Investigational Drugs Journal, 2010, 13, 723-31.	0.7	16
210	Vigor, Effort-Related Aspects of Motivation and Anhedonia. Current Topics in Behavioral Neurosciences, 2022, , 325-353.	1.7	16
211	Behavioral effects of the novel potent cannabinoid CB1 agonist AM 4054. Pharmacology Biochemistry and Behavior, 2013, 109, 16-22.	2.9	15
212	Preference for Exercise vs. More Sedentary Reinforcers: Validation of an Animal Model of Tetrabenazine-Induced Anergia. Frontiers in Behavioral Neuroscience, 2019, 13, 289.	2.0	15
213	Functional significance of nucleus accumbens dopamine: behavior, pharmacology and neurochemistry. Behavioural Brain Research, 2002, 137, 1.	2.2	14
214	The novel cannabinoid agonist AM 411 produces a biphasic effect on accuracy in a visual target detection task in rats. Behavioural Pharmacology, 2005, 16, 477-486.	1.7	14
215	Extracellular GABA in globus pallidus increases during the induction of oral tremor by haloperidol but not by muscarinic receptor stimulation. Behavioural Brain Research, 2012, 234, 129-135.	2.2	14
216	A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules, 2022, 12, 881.	4.0	14

#	Article	IF	CITATIONS
217	A critique of recent studies on placebo effects of antidepressants: importance of research on active placebos. Psychopharmacology, 2000, 152, 1-6.	3.1	13
218	The MAO-B inhibitor deprenyl reduces the oral tremor and the dopamine depletion induced by the VMAT-2 inhibitor tetrabenazine. Behavioural Brain Research, 2016, 298, 188-191.	2.2	13
219	Assessment of a glycine uptake inhibitor in animal models of effort-related choice behavior: implications for motivational dysfunctions. Psychopharmacology, 2017, 234, 1525-1534.	3.1	13
220	Lisdexamfetamine suppresses instrumental and consummatory behaviors supported by foods with varying degrees of palatability: Exploration of a binge-like eating model. Pharmacology Biochemistry and Behavior, 2020, 189, 172851.	2.9	13
221	The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures. Psychopharmacology, 2020, 237, 2845-2854.	3.1	12
222	<i>Inâ€vitro</i> analysis of Pitx3 in mesodiencephalic dopaminergic neuron maturation. European Journal of Neuroscience, 2009, 29, 2264-2275.	2.6	11
223	Oral Ingestion and Intraventricular Injection of Curcumin Attenuates the Effort-Related Effects of the VMAT-2 Inhibitor Tetrabenazine: Implications for Motivational Symptoms of Depression. Journal of Natural Products, 2017, 80, 2839-2844.	3.0	11
224	Sex differences in lever pressing and running wheel tasks of effort-based choice behavior in rats: Suppression of high effort activity by the serotonin transport inhibitor fluoxetine. Pharmacology Biochemistry and Behavior, 2021, 202, 173115.	2.9	11
225	Impact of Fluoxetine on Behavioral Invigoration of Appetitive and Aversively Motivated Responses: Interaction With Dopamine Depletion. Frontiers in Behavioral Neuroscience, 2021, 15, 700182.	2.0	11
226	c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde. Frontiers in Behavioral Neuroscience, 2013, 7, 48.	2.0	10
227	Energizing effects of bupropion on effortful behaviors in mice under positive and negative test conditions: modulation of DARPP-32 phosphorylation patterns. Psychopharmacology, 2021, 238, 3357-3373.	3.1	10
228	Fluorimetric Assay for the Determination of Glutamic Acid Decarboxylase Activity in Subregions of Rat Brain Tissue. Analytical Letters, 1980, 13, 1333-1344.	1.8	9
229	Partial reversal of the effort-related motivational effects of tetrabenazine with the MAO-B inhibitor deprenyl (selegiline): Implications for treating motivational dysfunctions. Pharmacology Biochemistry and Behavior, 2018, 166, 13-20.	2.9	8
230	The monoamine-oxidase B inhibitor deprenyl increases selection of high-effort activity in rats tested on a progressive ratio/chow feeding choice procedure: Implications for treating motivational dysfunctions. Behavioural Brain Research, 2018, 342, 27-34.	2.2	8
231	Neurobiology and pharmacology of activational and effort-related aspects of motivation: rodent studies. Current Opinion in Behavioral Sciences, 2018, 22, 114-120.	3.9	8
232	The non-selective adenosine antagonist theophylline reverses the effects of dopamine antagonism on tremor, motor activity and effort-based decision-making. Pharmacology Biochemistry and Behavior, 2020, 198, 173035.	2.9	8
233	Gas chromatographic—mass spectrometric determination of glutamic acid decarboxylase activity in subregions of rat brain. Biomedical Applications, 1981, 225, 283-290.	1.7	7
234	Detailed analysis of food-reinforced operant lever pressing distinguishes effects of a cannabinoid CB1 inverse agonist and dopamine D1 and D2 antagonists. Pharmacology Biochemistry and Behavior, 2010, 96, 75-81.	2.9	7

#	Article	IF	CITATIONS
235	Induction of oral tremor in mice by the acetylcholinesterase inhibitor galantamine: Reversal with adenosine A2A antagonism. Pharmacology Biochemistry and Behavior, 2016, 140, 62-67.	2.9	7
236	Effects of caffeine on ethanol-elicited place preference, place aversion and ERK phosphorylation in CD-1 mice. Journal of Psychopharmacology, 2020, 34, 1357-1370.	4.0	7
237	Centrally-Acting Antagonist of Muscarinic M4 Receptors. Expert Opinion on Therapeutic Targets, 1997, 1, 93-95.	1.0	5
238	Sex differences in effort-related decision-making: role of dopamine D2 receptor antagonism. Psychopharmacology, 2021, 238, 1609-1619.	3.1	5
239	Impact of Caffeine on Ethanolâ€Induced Stimulation and Sensitization: Changes in ERK and DARPPâ€32 Phosphorylation in Nucleus Accumbens. Alcoholism: Clinical and Experimental Research, 2021, 45, 608-619.	2.4	5
240	Involvement of Nucleus Accumbens Dopamine in Behavioral Activation and Effort-Related Functions. , 2009, , 286-300.		5
241	Effects of the dopamine depleting agent tetrabenazine on detailed temporal parameters of effortâ€related choice responding. Journal of the Experimental Analysis of Behavior, 2022, 117, 331-345.	1.1	5
242	Immunocytochemistry Studies of Basal Ganglia Adenosine A2AReceptors in Rat and Human Tissue. Journal of Histotechnology, 2010, 33, 41-47.	0.5	4
243	A role for accumbens neurons in exertion of effort and evaluating effort-related costs of instrumental actions (Commentary on Day etÂal.). European Journal of Neuroscience, 2011, 33, 306-307.	2.6	4
244	Insulin and Ventral Tegmental Dopamine: What's Impaired and What's Intact?. Cell Metabolism, 2013, 17 469-470.	⁷ , 16.2	4
245	The renaissance of acetaldehyde as a psychoactive compound: decades in the making. Frontiers in Behavioral Neuroscience, 2014, 8, 249.	2.0	4
246	Effort-related decision making in humanized COMT mice: Effects of Val158Met polymorphisms and possible implications for negative symptoms in humans. Pharmacology Biochemistry and Behavior, 2020, 196, 172975.	2.9	4
247	The Role of Adenosine in the Ventral Striatal Circuits Regulating Behavioral Activation and Effort-Related Decision Making: Importance for Normal and Pathological Aspects of Motivation. , 2013, , 493-512.		4
248	Subthalamic and Cortical Local Field Potentials Associated with Pilocarpine-Induced Oral Tremor in the Rat. Frontiers in Behavioral Neuroscience, 2016, 10, 123.	2.0	3
249	Neurobiology of Effort and the Role of Mesolimbic Dopamine. Advances in Motivation and Achievement: A Research Annual, 2016, , 229-256.	0.3	3
250	Editorial: Ethanol, Its Active Metabolites, and Their Mechanisms of Action: Neurophysiological and Behavioral Effects. Frontiers in Behavioral Neuroscience, 2018, 12, 95.	2.0	3
251	Parsing the Role of Mesolimbic Dopamine in Specific Aspects of Motivation: Behavioral Activation, Invigoration, and Effort-Based Decision Making. Advances in Motivation Science, 2018, 5, 129-167.	3.7	2
252	Dopamine/Adenosine Interactions Related to Tremor in Animal Models of Parkinsonism. Current Topics in Neurotoxicity, 2015, , 149-162.	0.4	1

#	Article	IF	CITATIONS
253	Physiological and Behavioral Assessment of Tremor in Rodents. , 2015, , 631-640.		1
254	Using complex behavior to understand brain mechanisms in health and disease. Journal of the Experimental Analysis of Behavior, 2022, , .	1.1	1
255	F.7 - IMPACT OF CAFFEINE ON VOLUNTARY ETHANOL INTAKE AND THE ALCOHOL DEPRIVATION EFFECT IN MICE. Behavioural Pharmacology, 2013, 24, e51.	1.7	Ο
256	250. Anergia and Effort-Related Aspects of Motivational Dysfunction in Animal Models of Depressive Symptoms: The Role of Mesolimbic Dopamine and Related Circuitry. Biological Psychiatry, 2018, 83, S101.	1.3	0
257	DA Neurons Promote the Instigation and Maintenance of Effortful Responding: A Commentary on Fischbach-Weiss, Reese, and Janak. Neuroscience, 2018, 372, 316.	2.3	0
258	The Impact of Ethanol Plus Caffeine Exposure on Cognitive, Emotional, and Motivational Effects Related to Social Functioning. , 2019, , 545-554.		0
259	Differentiating effort-related aspects of motivation from reinforcement learning: commentary on Soder et al. "Dose–response effects of d-amphetamine on effort-based decision-making and reinforcement learning― Neuropsychopharmacology, 2021, 46, 1066-1067.	5.4	Ο
260	Enfermedad de Parkinson después de la psicocirugÃa para el tratamiento de la adicción a la cocaÃna. Revista De Psicologia De La Salud, 2021, 33, 273.	0.5	0
261	Cannabinoid Cb1 Receptor Antagonists/Inverse Agonists and Food-Seeking Behavior. , 2011, , 441-456.		Ο
262	Neusilin® influences curcumin bioavailability and antiâ€depressant efficacy in rats (1044.17). FASEB Journal, 2014, 28, 1044.17.	0.5	0
263	Desmotivadora evolución de la desconexión asimétrica del Núcleo Accumbens en el trastorno por consumo de cocaÃna: un punto de vista traslacional. Revista De Psicologia De La Salud, 2018, 30, 306.	0.5	Ο