
Xuechen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6869244/publications.pdf Version: 2024-02-01

XUECHEN LL

#	Article	IF	CITATIONS
1	A diffuse argon plume generated downstream of an atmospheric pressure plasma jet equipped with a positively biased electrode. Journal Physics D: Applied Physics, 2022, 55, 015203.	2.8	9
2	Various concentric-ring patterns formed in a water-anode glow discharge operated at atmospheric pressure. Plasma Science and Technology, 2022, 24, 055405.	1.5	4
3	Numerically simulated influence of positive ions on the propagation of a positive streamer initiated in an argon plasma jet. Physics of Fluids, 2022, 34, .	4.0	9
4	Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure. Chinese Physics B, 2022, 31, 065205.	1.4	8
5	Temporal Evolutions of Self-Organized Patterns Formed on the Water-Anode Surface of an Atmospheric Pressure Glow Discharge. IEEE Transactions on Plasma Science, 2022, 50, 1717-1722.	1.3	6
6	Complicated streamer dynamics in petalâ€like patterns formed on the substrate downstream of an argon plasma jet. Plasma Processes and Polymers, 2022, 19, .	3.0	3
7	Effect of Dielectric Surface Morphology on Dielectric Barrier Discharge Mode in Air at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2021, 49, 214-218.	1.3	14
8	Influence of air addition on surface modification of polyethylene terephthalate treated by an atmospheric pressure argon plasma brush. Plasma Science and Technology, 2021, 23, 085504.	1.5	15
9	Mechanism of snake-like propagation for positive streamers in a meandering plasma plume excited by a positively biased sinusoidal voltage. Physics of Plasmas, 2021, 28, .	1.9	9
10	Morphology evolution of an atmospheric pressure glow discharge initiated in the air gap between a liquid cathode and a needle anode. Plasma Sources Science and Technology, 2021, 30, 095021.	3.1	11
11	A compound plume with solid and hollow parts formed downstream of an argon plasma jet at atmospheric pressure. Physics of Plasmas, 2021, 28, .	1.9	8
12	Morphology transition from diffuse to diffuse-and-filamentary for an argon plume with varying sinusoidal frequency or voltage amplitude. Plasma Sources Science and Technology, 2020, 29, 065015.	3.1	17
13	Generation of a large-scale uniform plasma plume through the interactions between a pair of atmospheric pressure argon plasma jets. Applied Physics Letters, 2020, 117, .	3.3	20
14	Atmospheric pressure self-organized filaments in dielectric barrier discharge excited by a modulated sinusoidal voltage. Physics of Plasmas, 2020, 27, .	1.9	12
15	Diffuse and spotted anode layers in an atmospheric pressure glow discharge with a water electrode and miniature argon flow. Plasma Processes and Polymers, 2020, 17, 1900223.	3.0	14
16	Comparison of discharge characteristics and methylene blue degradation through a direct-current excited plasma jet with air and oxygen used as working gases. Plasma Science and Technology, 2020, 22, 055505.	1.5	14
17	Influence of operating parameters on highâ€pressure microhollow cathode discharge with a cylindrical hole. Plasma Processes and Polymers, 2020, 17, 1900228.	3.0	3
18	Influence of asymmetric degree on the characteristics of a homogeneous barrier discharge excited by an asymmetric sine. Physics of Plasmas, 2020, 27, .	1.9	8

Xuechen Li

#	Article	IF	CITATIONS
19	Regularly-swelling plumes generated in atmospheric pressure argon plasma jet excited by a biased sinusoidal voltage. Plasma Sources Science and Technology, 2019, 28, 055006.	3.1	26
20	Observation of self-organized honeycomb patterns by fast photography in a liquid-anode discharge. Physics of Plasmas, 2019, 26, .	1.9	4
21	Mode transitions of a helium dielectric barrier discharge from Townsend, normal glow, to abnormal glow with varying voltage rising time. AIP Advances, 2019, 9, .	1.3	6
22	A Regularly Swelling Hollow Plume Generated in an Atmospheric Pressure Argon Plasma Jet Excited by a Positively Biased Sinusoidal Voltage. IEEE Transactions on Plasma Science, 2019, 47, 4868-4872.	1.3	5
23	Spatialâ€ŧemporal evolutions of surface discharge patterns generated on dielectric target interacted with a plasma jet. Plasma Processes and Polymers, 2019, 16, 1900073.	3.0	13
24	Influence of external parameters on nonlinear behaviors in a helium dielectric-barrier discharge excited by a modulated voltage. Physics of Plasmas, 2019, 26, .	1.9	8
25	Comparison of deionized and tap water activated with an atmospheric pressure glow discharge. Physics of Plasmas, 2019, 26, .	1.9	12
26	Large-scale surface modification to improve hydrophilicity through using a plasma brush operated at one atmospheric pressure. Physics of Plasmas, 2019, 26, .	1.9	23
27	Spatial–Temporal Evolution and Plasma Parameters' Diagnosis of a Transverse Glow Discharge in Atmospheric Pressure Air. IEEE Transactions on Plasma Science, 2019, 47, 1330-1335.	1.3	7
28	Characterization of a Laminar Plasma Plume Based on Dielectric-Barrier Discharge at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2018, 46, 583-586.	1.3	8
29	Plume transition from solid to hollow with increasing the bias value of a sinusoidal voltage applied to an argon plasma jet. Plasma Processes and Polymers, 2018, 15, 1700224.	3.0	18
30	Influence of driving frequency on discharge modes in the dielectric barrier discharge excited by a triangle voltage. Physics of Plasmas, 2018, 25, 013512.	1.9	11
31	A diffuse argon plume generated by a longitudinal slit jet equipped with a quadri-electrode barrier discharge. Physics of Plasmas, 2018, 25, .	1.9	5
32	Dynamics of an atmospheric pressure planar plume with two naked electrodes excited by an alternating current voltage. Journal of Applied Physics, 2018, 123, .	2.5	9
33	Influence of voltage duty ratio on current asymmetry and mode of a helium dielectric-barrier discharge excited by a modulated voltage. Physics of Plasmas, 2018, 25, 073510.	1.9	8
34	Characteristics of a micro-gap argon barrier discharge excited by a saw-tooth voltage at atmospheric pressure. Physics of Plasmas, 2017, 24, .	1.9	13
35	Three modes of a direct-current plasma jet operated underwater to degrade methylene blue. Plasma Science and Technology, 2017, 19, 115505.	1.5	8
36	Surface discharge induced interactions of filaments in argon dielectric barrier discharge at atmospheric pressure. Physics of Plasmas, 2017, 24, 103520.	1.9	6

Xuechen Li

#	Article	lF	CITATIONS
37	Generation of a planar direct-current glow discharge in atmospheric pressure air using rod array electrode. Scientific Reports, 2017, 7, 2672.	3.3	7
38	Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap. Physics of Plasmas, 2017, 24, .	1.9	6
39	Two modes of a plasma jet excited by a direct current voltage. Plasma Sources Science and Technology, 2016, 25, 025022.	3.1	10
40	Generation of a diffuse brush-shaped plasma plume using a dielectric barrier discharge at atmospheric pressure. Physics of Plasmas, 2016, 23, .	1.9	7
41	Performance of a large-scale barrier discharge plume improved by an upstream auxiliary barrier discharge. Applied Physics Letters, 2016, 109, .	3.3	18
42	A linear-field plasma jet for generating a brush-shaped laminar plume at atmospheric pressure. Physics of Plasmas, 2016, 23, .	1.9	5
43	Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage. Scientific Reports, 2016, 6, 35653.	3.3	13
44	A uniform laminar air plasma plume with large volume excited by an alternating current voltage. Plasma Sources Science and Technology, 2015, 24, 065020.	3.1	14
45	Diagnosis on the Plasma Parameters of an Atmospheric Pressure Uniform Discharge Operated in Open Air. Journal of the Physical Society of Japan, 2014, 83, 024502.	1.6	3
46	A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure. Journal of Applied Physics, 2014, 116, .	2.5	20
47	A Pulsing Argon Plasma Plume Excited by a Direct-Current Voltage. Journal of the Physical Society of Japan, 2014, 83, 104501.	1.6	0
48	Characteristics of a Direct Current-driven plasma jet operated in open air. Applied Physics Letters, 2013, 103, .	3.3	15
49	A large gap uniform discharge excited by a direct-current voltage at atmospheric pressure. Applied Physics Letters, 2013, 102, 223501.	3.3	10
50	Investigation on collisions of filament pairs in dielectric barrier discharge. Physics of Plasmas, 2013, 20, .	1.9	6
51	Characteristics of an atmospheric-pressure argon plasma jet excited by a dc voltage. Plasma Sources Science and Technology, 2013, 22, 045007.	3.1	14
52	Self-pulsing discharge of a plasma brush operated in atmospheric-pressure argon. Europhysics Letters, 2013, 102, 55003.	2.0	12
53	Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage. Physics of Plasmas, 2012, 19, .	1.9	18
54	Development of a dielectric barrier discharge enhanced plasma jet in atmospheric pressure air. Physics of Plasmas, 2012, 19, 093504.	1.9	10

XUECHEN LI

#	Article	IF	CITATIONS
55	One atmospheric pressure plasma jet with two modes at a frequency of several tens kHz. Physics of Plasmas, 2011, 18, 043505.	1.9	18
56	Signal process of light emission patterns in argon/air dielectric barrier discharge. , 2010, , .		0
57	Diagnosis on the Molecular Vibrational Temperature of a Micro-Plasma Jet Operated at Atmospheric Pressure. , 2010, , .		0
58	Current Measurements and Diagnosis on Dielectric Barrier Discharge in a Coaxial Geometry at Atmospheric Pressure. , 2010, , .		0
59	Electromagnetic Signal Processing to Diagnose the Electron Density in Gas Discharge. , 2010, , .		0
60	Characteristics of an atmospheric pressure argon glow discharge in a coaxial electrode geometry. Plasma Sources Science and Technology, 2008, 17, 015017.	3.1	36
61	Spatio-temporal dynamics of discharge domains in a dielectric barrier discharge device. Plasma Sources Science and Technology, 2003, 12, 380-388.	3.1	33